MATH 600 Homework 5 Due 19 November 2012

- Lee 17-2 Compute the flows of the following vector fields on \mathbb{R}^2 . Recall that a flow is a pair \mathcal{D}, θ , where $\mathcal{D} \subset \mathbb{R} \times M$ and $\theta : \mathcal{D} \to M$ is a local group action of \mathbb{R} on M.
 - (a) $V = y \frac{\partial}{\partial x} + \frac{\partial}{\partial y}$
 - (b) $W = x \frac{\partial}{\partial x} + 2y \frac{\partial}{\partial y}$
 - (c) $X = x \frac{\partial}{\partial x} y \frac{\partial}{\partial y}$

(d)
$$Y = x \frac{\partial}{\partial y} + y \frac{\partial}{\partial x}$$

Lee 17-5 We call a curve $\gamma : \mathbb{R} \to M$ periodic if there is a T > 0 so that $\gamma(t + kT) = \gamma(t)$ for all $t \in \mathbb{R}$ and $k \in \mathbb{Z}$. Suppose $X \in \mathfrak{X}(M)$ and γ is a maximal integral curve for X.

- (a) Show γ is exactly one of constant, injective, or nonconstant periodic.
- (b) If γ is periodic and nonconstant, show that there is a unique positive T > 0 so that $\gamma(t) = \gamma(t')$ iff t t' = kT for some $k \in \mathbb{Z}$.
- (c) Show that the image of γ is an immersed submanifold, diffeomorphic to \mathbb{R}^0 , \mathbb{R} , or S^1 .
- Lee 17-8 Suppose M is oriented and θ is a local flow on M. Show that θ_t is orientation-preserving where it is defined.
- Lee 17-13 If M is a manifold-with-boundary, then the boundary ∂M has a *collar*. (*Hint*. Read Lemma 13.15 and Lemma 13.16.)

Proposition 18.9 Suppose X, Y are smooth vector fields, ω and τ are smooth differential forms. Then

(a)
$$\mathcal{L}_X(\omega \wedge \tau) = (\mathcal{L}_X \omega) \wedge \tau + \omega \wedge (\mathcal{L}_X \tau)$$

(b) $\mathcal{L}_X(Y \sqcup \omega) = (\mathcal{L}_X Y) \sqcup \omega + Y \lrcorner (\mathcal{L}_X \omega)$

Lee 18-6 Let $X \in \mathfrak{X}(M)$. So that the operator $\mathcal{L}_X : \mathcal{T}^k(M) \to \mathcal{T}^k(M)$ is uniquely defined by the properties:

- (a) $\mathcal{L}_X f = X f$ for any $f \in C^{\infty}(M)$.
- (b) \mathcal{L}_X satisfies the Leibniz rule with respect to \otimes .
- (c) \mathcal{L}_X satisfies the Leibniz rule with respect to contraction of vector fields into one-forms.
- (d) \mathcal{L}_X commutes with d on $C^{\infty}(M)$, i.e. $\mathcal{L}_X(df) = d(\mathcal{L}_X(f))$ for any smooth function f.

(Part of this exercise is to write down what the second and third items mean without looking up the statement of the problem in Lee.)

- 1. Prove that d commutes with the Lie derivative as follows. Let $\omega \in \bigwedge^k(M), X \in \mathfrak{X}(M), \theta_t$ the flow generated by X. Let $\sup p(X) = \overline{\{p \in M | X_p \neq 0\}}$.
 - (a) Suppose $X_p \neq 0$. Let $\{x^1, \ldots, x^n\}$ be the coordinates provided by the Canonical Form Theorem, so that $\theta_t(x^1, \ldots, x^n) = (x^1 + t, x^2, \ldots, x^n)$. If $\omega = \omega_I dx^I$ in these coordinates, give the coordinate expressions for $\theta_t^* \omega$ and $d(\theta_t^* \omega)$.
 - (b) Give the coordinate expressions for $\frac{d}{dt}|_{t=0}\theta_t^*\omega$ and $d\left(\frac{d}{dt}|_{t=0}\theta_t^*\omega\right)$.
 - (c) Conclude that $(\mathcal{L}_X d\omega)_p = (d(\mathcal{L}_X \omega))_p$.
 - (d) Show that the same statement holds for any $p \in \text{supp}(X)$.
 - (e) Show that $(\mathcal{L}_X d\omega)_p = (d(\mathcal{L}_X \omega))_p$ if $X \equiv 0$ in a neighbourhood of p.