MATH 600 Homework 5

Due 19 November 2012
Lee 17-2 Compute the flows of the following vector fields on \mathbb{R}^{2}. Recall that a flow is a pair \mathcal{D}, θ, where $\mathcal{D} \subset R \times M$ and $\theta: \mathcal{D} \rightarrow M$ is a local group action of \mathbb{R} on M.
(a) $V=y \frac{\partial}{\partial x}+\frac{\partial}{\partial y}$
(b) $W=x \frac{\partial}{\partial x}+2 y \frac{\partial}{\partial y}$
(c) $X=x \frac{\partial}{\partial x}-y \frac{\partial}{\partial y}$
(d) $Y=x \frac{\partial}{\partial y}+y \frac{\partial}{\partial x}$

Lee 17-5 We call a curve $\gamma: \mathbb{R} \rightarrow M$ periodic if there is a $T>0$ so that $\gamma(t+k T)=\gamma(t)$ for all $t \in \mathbb{R}$ and $k \in \mathbb{Z}$. Suppose $X \in \mathfrak{X}(M)$ and γ is a maximal integral curve for X.
(a) Show γ is exactly one of constant, injective, or nonconstant periodic.
(b) If γ is periodic and nonconstant, show that there is a unique positive $T>0$ so that $\gamma(t)=\gamma\left(t^{\prime}\right)$ iff $t-t^{\prime}=k T$ for some $k \in \mathbb{Z}$.
(c) Show that the image of γ is an immersed submanifold, diffeomorphic to \mathbb{R}^{0}, \mathbb{R}, or S^{1}.

Lee 17-8 Suppose M is oriented and θ is a local flow on M. Show that θ_{t} is orientation-preserving where it is defined.

Lee 17-13 If M is a manifold-with-boundary, then the boundary ∂M has a collar. (Hint. Read Lemma 13.15 and Lemma 13.16.)
Proposition 18.9 Suppose X, Y are smooth vector fields, ω and τ are smooth differential forms. Then
(a) $\mathcal{L}_{X}(\omega \wedge \tau)=\left(\mathcal{L}_{X} \omega\right) \wedge \tau+\omega \wedge\left(\mathcal{L}_{X} \tau\right)$
(b) $\left.\left.\left.\mathcal{L}_{X}(Y\lrcorner \omega\right)=\left(\mathcal{L}_{X} Y\right)\right\lrcorner \omega+Y\right\lrcorner\left(\mathcal{L}_{X} \omega\right)$

Lee 18-6 Let $X \in \mathfrak{X}(M)$. So that the operator $\mathcal{L}_{X}: \mathcal{T}^{k}(M) \rightarrow \mathcal{T}^{k}(M)$ is uniquely defined by the properties:
(a) $\mathcal{L}_{X} f=X f$ for any $f \in C^{\infty}(M)$.
(b) \mathcal{L}_{X} satisfies the Leibniz rule with respect to \otimes.
(c) \mathcal{L}_{X} satisfies the Leibniz rule with respect to contraction of vector fields into one-forms.
(d) \mathcal{L}_{X} commutes with d on $C^{\infty}(M)$, i.e. $\mathcal{L}_{X}(d f)=d\left(\mathcal{L}_{X}(f)\right)$ for any smooth function f.
(Part of this exercise is to write down what the second and third items mean without looking up the statement of the problem in Lee.)

1. Prove that d commutes with the Lie derivative as follows. Let $\omega \in \bigwedge^{k}(M), X \in \mathfrak{X}(M), \theta_{t}$ the flow generated by X. Let $\operatorname{supp}(X)=\overline{\left\{p \in M \mid X_{p} \neq 0\right\}}$.
(a) Suppose $X_{p} \neq 0$. Let $\left\{x^{1}, \ldots, x^{n}\right\}$ be the coordinates provided by the Canonical Form Theorem, so that $\theta_{t}\left(x^{1}, \ldots, x^{n}\right)=\left(x^{1}+t, x^{2}, \ldots, x^{n}\right)$. If $\omega=\omega_{I} d x^{I}$ in these coordinates, give the coordinate expressions for $\theta_{t}^{*} \omega$ and $d\left(\theta_{t}^{*} \omega\right)$.
(b) Give the coordinate expressions for $\left.\frac{d}{d t}\right|_{t=0} \theta_{t}^{*} \omega$ and $d\left(\left.\frac{d}{d t}\right|_{t=0} \theta_{t}^{*} \omega\right)$.
(c) Conclude that $\left(\mathcal{L}_{X} d \omega\right)_{p}=\left(d\left(\mathcal{L}_{X} \omega\right)\right)_{p}$.
(d) Show that the same statement holds for any $p \in \operatorname{supp}(X)$.
(e) Show that $\left(\mathcal{L}_{X} d \omega\right)_{p}=\left(d\left(\mathcal{L}_{X} \omega\right)\right)_{p}$ if $X \equiv 0$ in a neighbourhood of p.
