MATH 600 Homework 6 Not due, but do!

- Lee 14-1 Consider $\mathbb{T}^2 = S^1 \times S^1 \subset \mathbb{R}^4$, defined by $w^2 + x^2 = y^2 + z^2 = 1$, and with the product orientation. Compute $\int_{\mathbb{T}^2} xyz dw \wedge dy$.
- Lee 15-3 If M is a smooth manifold and $\omega \in \mathcal{A}^k(M), \eta \in \mathcal{A}^l(M)$ are closed forms, show that the cohomology class of $\omega \wedge \eta$ depends only on the cohomology classes of ω and η . (Thus there is a bilinear map $\cup : H^k(M) \times H^l(M) \to H^{k+l}(M)$ given by $[\omega] \cup [\eta] = [\omega \wedge \eta]$, called the *cup product*.)
- Spivak 8-31 (more on the cup product)
 - (a) If $\alpha \in H^k, \beta \in H^l$, show that $\alpha \cup \beta = (-1)^{kl} \beta \cup \alpha$.
 - (b) The cup product is natural: if $F: M \to N$, then $F^*(\alpha \cup \beta) = (F^*\alpha) \cup (F^*\beta)$.
 - (c) Show that the cross product $\times : H^k(M) \times H^l(N) \to H^{k+l}(M \times N)$ given by $[\omega] \times [\eta] = [\pi_M^* \omega \wedge \pi_N^* \eta]$ is well-defined (π_M and π_N are the projections to M and N respectively.)
 - (d) If $\Delta: M \to M \times M$ is the diagonal map $p \mapsto (p, p)$, then $\alpha \cup \beta = \Delta^*(\alpha \times \beta)$.

Spivak 8-3 If n is an integer and R > 0, define the singular 1-cell $c_{R,n} : [0,1] \to \mathbb{R}^2 \setminus \{0\}$ by

 $c_{R,n}(t) = (R\cos(2n\pi t), R\sin(2n\pi t))$

- (a) For any R_1, R_2, n , show that there is a singular 2-cell $\sigma : [0, 1]^2 \to \mathbb{R}^2 \setminus \{0\}$ with $\partial \sigma = c_{R_1, n} c_{R_2, n}$.
- (b) If $\gamma : [0,1] \to \mathbb{R}^2 \setminus \{0\}$ is any curve with $\gamma(0) = \gamma(1)$, show that there is some $n \in \mathbb{Z}$ with $\gamma c_{1,n} = \partial \sigma$ for some singular 2-cell σ .
- (c) Show that n is unique. (This n is the winding number of γ around 0.)
- Spivak 8-5 We could also have defined integration using singular simplices. Let $\Delta_k = \{(x^1, \ldots, x^k) | 0 \le x^i \le 1, \sum_i x^i \le 1\};$ a singular k-simplex on a manifold M is a smooth map $\sigma : \Delta_k \to M$. A singular k-chain is a formal sum of singular k-simplices.
 - (a) For each $0 \le i \le k$, define $\partial_i : \Delta_{k-1} \to \Delta_k$ by:

$$\begin{cases} \partial_0(x^1, \dots, x^{k-1}) &= \left(\left[1 - \sum_i x^i \right], x^1, \dots, x^{k-1} \right) \\ \partial_i(x^1, \dots, x^{k-1}) &= \left(x^1, \dots, x^{i-1}, 0, x^i \dots, x^{k-1} \right) \end{cases}$$

If c is a singular k-simplex, define the singular k - 1-simplex $\partial \sigma$ by

$$\partial \sigma = \sum_{i=0}^{k} (-1)^i \sigma \circ \partial_i$$

Show that $\partial^2 = 0$.

(b) Define integration of an *n*-form on the standard singular *n*-simplex. Show that, if $\omega = f dx^1 \wedge \cdots \wedge dx^i \wedge \cdots \wedge dx^n$, then

$$\int_{\Delta_n} d\omega = \int_{\partial \Delta_n} \omega$$

- (c) Define integration of k-forms on singular k-simplices.
- (d) Prove Stokes' theorem for singular k-simplices. (Imitate the proof of, but do not use, Stokes' Theorem for k-cells.)
- 1. Given a manifold-with-boundary M^n , with an orientation μ , define the *outward orientation* $\partial \mu$ on ∂M by declaring, for any $p \in \partial M$, that an ordered basis $\{v_1, \ldots, v_{n-1}\}$ for $T_p(\partial M)$ is in $(\partial \mu)_p$ exactly if $\{\nu, v_1, \ldots, v_{n-1}\} \in \mu_p$, where ν is an outward-pointing vector at p.
 - (a) Show that $\partial \mu$ is well-defined, that is, the choice of outward-pointing vector does not make a difference.

- (b) Consider the *n*-dimensional Euclidean halfspace $\mathbf{H}^n = \{(x^1, \ldots, x^n) | x^n \ge 0\}$, with its standard orientation μ_0 . Show that $\partial \mu_0$, on $\partial \mathbf{H}^n = \mathbb{R}^{n-1} \times \{0\} \cong \mathbb{R}^{n-1}$ is $(-1)^n$ times the usual orientation on \mathbb{R}^{n-1} .
- 2. Suppose $\pi : \tilde{M}^n \to M^n$ is a k-sheeted smooth covering map, \tilde{M} and M are oriented, and π is an orientation-preserving map. If $\omega \in \mathcal{A}_0^n(M)$, show $\int_{\tilde{M}} \pi^* \omega = k \int_M \omega$.