MATH 600 Homework 6

Not due, but do!
Lee 14-1 Consider $\mathbb{T}^{2}=S^{1} \times S^{1} \subset \mathbb{R}^{4}$, defined by $w^{2}+x^{2}=y^{2}+z^{2}=1$, and with the product orientation. Compute $\int_{\mathbb{T}^{2}} x y z d w \wedge d y$.
Lee 15-3 If M is a smooth manifold and $\omega \in \mathcal{A}^{k}(M), \eta \in \mathcal{A}^{l}(M)$ are closed forms, show that the cohomology class of $\omega \wedge \eta$ depends only on the cohomology classes of ω and η. (Thus there is a bilinear map $\cup: H^{k}(M) \times H^{l}(M) \rightarrow H^{k+l}(M)$ given by $[\omega] \cup[\eta]=[\omega \wedge \eta]$, called the cup product.)
Spivak 8-31 (more on the cup product)
(a) If $\alpha \in H^{k}, \beta \in H^{l}$, show that $\alpha \cup \beta=(-1)^{k l} \beta \cup \alpha$.
(b) The cup product is natural: if $F: M \rightarrow N$, then $F^{*}(\alpha \cup \beta)=\left(F^{*} \alpha\right) \cup\left(F^{*} \beta\right)$.
(c) Show that the cross product $\times: H^{k}(M) \times H^{l}(N) \rightarrow H^{k+l}(M \times N)$ given by $[\omega] \times[\eta]=\left[\pi_{M}^{*} \omega \wedge \pi_{N}^{*} \eta\right]$ is well-defined (π_{M} and π_{N} are the projections to M and N respectively.)
(d) If $\Delta: M \rightarrow M \times M$ is the diagonal map $p \mapsto(p, p)$, then $\alpha \cup \beta=\Delta^{*}(\alpha \times \beta)$.

Spivak 8-3 If n is an integer and $R>0$, define the singular 1-cell $c_{R, n}:[0,1] \rightarrow \mathbb{R}^{2} \backslash\{0\}$ by

$$
c_{R, n}(t)=(R \cos (2 n \pi t), R \sin (2 n \pi t))
$$

(a) For any R_{1}, R_{2}, n, show that there is a singular 2-cell $\sigma:[0,1]^{2} \rightarrow \mathbb{R}^{2} \backslash\{0\}$ with $\partial \sigma=c_{R_{1}, n}-c_{R_{2}, n}$.
(b) If $\gamma:[0,1] \rightarrow \mathbb{R}^{2} \backslash\{0\}$ is any curve with $\gamma(0)=\gamma(1)$, show that there is some $n \in \mathbb{Z}$ with $\gamma-c_{1, n}=\partial \sigma$ for some singular 2-cell σ.
(c) Show that n is unique. (This n is the winding number of γ around 0 .)

Spivak 8-5 We could also have defined integration using singular simplices. Let $\Delta_{k}=\left\{\left(x^{1}, \ldots, x^{k}\right) \mid 0 \leq x^{i} \leq 1, \sum_{i} x^{i} \leq 1\right\}$; a singular k-simplex on a manifold M is a smooth map $\sigma: \Delta_{k} \rightarrow M$. A singular k-chain is a formal sum of singular k-simplices.
(a) For each $0 \leq i \leq k$, define $\partial_{i}: \Delta_{k-1} \rightarrow \Delta_{k}$ by:

$$
\left\{\begin{array}{l}
\partial_{0}\left(x^{1}, \ldots, x^{k-1}\right)=\left(\left[1-\sum_{i} x^{i}\right], x^{1}, \ldots, x^{k-1}\right) \\
\partial_{i}\left(x^{1}, \ldots, x^{k-1}\right)=\left(x^{1}, \ldots, x^{i-1}, 0, x^{i} \ldots, x^{k-1}\right)
\end{array}\right.
$$

If c is a singular k-simplex, define the singular $k-1$-simplex $\partial \sigma$ by

$$
\partial \sigma=\sum_{i=0}^{k}(-1)^{i} \sigma \circ \partial_{i}
$$

Show that $\partial^{2}=0$.
(b) Define integration of an n-form on the standard singular n-simplex. Show that, if $\omega=f d x^{1} \wedge$ $\cdots \wedge \hat{d x^{i}} \wedge \cdots \wedge d x^{n}$, then

$$
\int_{\Delta_{n}} d \omega=\int_{\partial \Delta_{n}} \omega
$$

(c) Define integration of k-forms on singular k-simplices.
(d) Prove Stokes' theorem for singular k-simplices. (Imitate the proof of, but do not use, Stokes' Theorem for k-cells.)

1. Given a manifold-with-boundary M^{n}, with an orientation μ, define the outward orientation $\partial \mu$ on ∂M by declaring, for any $p \in \partial M$, that an ordered basis $\left\{v_{1}, \ldots, v_{n-1}\right\}$ for $T_{p}(\partial M)$ is in $(\partial \mu)_{p}$ exactly if $\left\{\nu, v_{1}, \ldots, v_{n-1}\right\} \in \mu_{p}$, where ν is an outward-pointing vector at p.
(a) Show that $\partial \mu$ is well-defined, that is, the choice of outward-pointing vector does not make a difference.
(b) Consider the n-dimensional Euclidean halfspace $\mathbf{H}^{n}=\left\{\left(x^{1}, \ldots, x^{n}\right) \mid x^{n} \geq 0\right\}$, with its standard orientation μ_{0}. Show that $\partial \mu_{0}$, on $\partial \mathbf{H}^{n}=\mathbb{R}^{n-1} \times\{0\} \cong \mathbb{R}^{n-1}$ is $(-1)^{n}$ times the usual orientation on \mathbb{R}^{n-1}.
2. Suppose $\pi: \tilde{M}^{n} \rightarrow M^{n}$ is a k-sheeted smooth covering map, \tilde{M} and M are oriented, and π is an orientation-preserving map. If $\omega \in \mathcal{A}_{0}^{n}(M)$, show $\int_{\tilde{M}} \pi^{*} \omega=k \int_{M} \omega$.
