MATH 600 Topology Cheatsheet

This cheatsheet is not, of course, complete.

A topological space is a pair (X, \mathcal{O}) , where X is a set and \mathcal{O} is a collection of **open subsets** of X so that:

- 1. $X \in \mathcal{O}, \emptyset \in \mathcal{O}$
- 2. For any collection $\{O_{\alpha}\}_{\alpha \in \Lambda}$ of open sets, $\bigcup_{\alpha \in \Lambda} O_{\alpha}$ is an open set.
- 3. For any finite collection O_1, \ldots, O_N of open sets, $\bigcap_{i=1}^N O_i$ is an open set.

A base (or basis) for the topological space (X, \mathcal{O}) is a collection $\mathcal{B} \subseteq \mathcal{O}$ such that any $\mathcal{O} \in \mathcal{O}$ has $\mathcal{O} = \bigcup_{\alpha \in \Lambda} B_{\alpha}$ for some $\{B_{\alpha}\}_{\alpha \in \Lambda} \subset \mathcal{B}$.

An **open cover** for X is a collection of open sets $\{O_{\alpha}\}_{\alpha \in \Lambda}$ with $X = \bigcup_{\alpha \in \Lambda} O_{\alpha}$.

A topological space (X, \mathcal{O}) is:

- Hausdorff if for every pair of points $p, q \in X$ there are open sets $U, V \in \mathcal{O}$ with $p \in U, q \in V$ and $U \cap V = \emptyset.$
- second-countable if it has a countable base.
- connected if there are not two disjoint, nonempty, open subsets which cover X
- **path-connected** if every pair of points can be joined by a path.
- locally path-connected if there is a base of path-connected sets.
- compact if every open cover $\{O_{\alpha}\}_{\alpha \in \Lambda}$ has a finite subcover, i.e. there are $\alpha_1, \ldots, \alpha_N \in \Lambda$ for which
 - $X = \bigcup_{i=1}^{N} O_{\alpha_i}.$
- locally compact if every point $p \in X$ lies in an open set O, which is contained in a compact set K.

Given a topological space (X, \mathcal{O}) and a subset $S \subseteq X$, we can form a topological space $(S, \mathcal{O} \cap S)$ by setting $\mathcal{O} \cap S = \{ \mathcal{O} \cap S | \mathcal{O} \in \mathcal{O} \}$. We say that S has the subspace topology from (X, \mathcal{O}) , and call $(S, \mathcal{O} \cap S)$ a topological subspace of (X, \mathcal{O}) .

(As an exercise, prove that a topological subspace is a topological space in its own right.)

Given a topological space (\tilde{X}, \mathcal{O}) and an equivalence relation \sim on \tilde{X} , let $X = \tilde{X}/_{\sim} = \{[x] | x \in X\}$. We can form a topological space $(X, \mathcal{O}/_{\sim})$ by setting $\mathcal{O}/_{\sim} = \{U \subseteq X | \{x | [x] \in U\} \in \mathcal{O}\}$. We call $(X, \mathcal{O}/_{\sim})$ the quotient of X by \sim .

Given topological spaces (X, \mathcal{O}_X) and (Y, \mathcal{O}_Y) , we can form a topological space $(X \times Y, \mathcal{O}_X \times \mathcal{O}_Y)$ by setting $\mathcal{O}_X \times \mathcal{O}_Y$ to be the set of all unions of products $O_X \times O_Y$, where $O_X \in \mathcal{O}_X$ and $O_Y \in \mathcal{O}_Y$. We call $(X \times Y, \mathcal{O}_X \times \mathcal{O}_Y)$ the **product** of (X, \mathcal{O}_X) and (Y, \mathcal{O}_Y) .

(Note: when the number of factors in the product is not finite, there are some subtleties as to how to generalise this definition! This won't concern us, however.)

Lemma. In a locally path-connected space, path-connectedness and connectedness are equivalent.

The following properties are quotient-hereditary, i.e. if a topological space \tilde{X} has the property, then so does any quotient $X = \tilde{X}/_{\sim}$:

- $1. \ {\rm connectedness}$
- $2. \ {\rm path-connectedness}$
- 3. local path-connectedness
- 4. compactness

The following properties are subspace-hereditary, i.e. if a topological space X has the property, then so does any subspace $S \subset X$:

- 1. Hausdorffness
- 2. second-countability

The following properties are finite-product-herediary, i.e. if the topological spaces X_1, \ldots, X_N have the property, then so does $X_1 \times \cdots \times X_N$:

- 1. connectedness
- 2. path-connectedness
- 3. local path-connectedness
- 4. compactness
- 5. Hausdorffness
- 6. second-countability

Topological manifolds are automatically locally path-connected and locally compact.

Given two topological spaces (X_0, \mathcal{O}_0) and (X_1, \mathcal{O}_1) , a function $\phi : X_0 \to X_1$ is called a **continuous map** (or just **map**) if, for every $O \in \mathcal{O}_1$, $\phi^{-1}(O) \in \mathcal{O}_0$. A continuous map with an inverse that is also a continuous map is called a **homeomorphism**.