MTH 124.019 Quiz 5

Friday 19 February 2010
Name:
Show all your work. Points will be deducted for incomplete work. Write your answer in the box provided

1. A typical lung can hold about one litre of air. The volume of the lung, V, is a function of how much pressure the diaphragm puts on the lung, p. The compliance $C(p)$ of the lung is the derivative of the volume, thought of as a function of the pressure. The following table records the volume of a lung as a function of the pressure from the diaphragm.

pressure (mm Hg)	7.3	11.0	14.7	18.4	22.1	25.8	29.5
volume (L)	1	0.95	0.86	0.70	0.49	0.29	0.20

(a) What are the units of compliance?
(b) What are the units of $C^{\prime}(p)$?

(c) Describe the concavity of the graph of $V(p)$. Justify your answer in terms of the table above. (Hint: You may want to make a table of values of $C(p)$ and $C^{\prime}(p)$.)
2. "Blood is being lost, but the rate of blood loss is decreasing." Circle all of the graphs below which could be the amount of blood lost, $B(t)$, after t minutes.

