Strange Algorithm

Start with $a \in \mathbb{N}$, $a_0 = a$.

- If a_0 is even, then $a_i = \frac{a_i}{2}$
- If a_0 is odd, then $a_i = 3a_0 + 1$

Collatz Conjecture

Starting with any a, do you get down to 1 eventually?

5, 16, 8, 4, 2, 1, 4, 2, 1, 4, 2, ...

6, 3, 10, 5, 16, 8, 4, 2, 1

Start with $a, b \in \mathbb{N}$.

$a|x+b$, $x, y \in \mathbb{Z}$

What numbers (integers) this way?

If $d | a$, $d | b$, then $d | ax + by$ for $x, y \in \mathbb{Z}$.

$gcd(a, b) | (ax + by)$ for $x, y \in \mathbb{Z}$.
Proposition: The smallest positive number you express as \(ax + by \), \(x, y \in \mathbb{Z} \) is \(\gcd(a, b) = g \).

Proof: \(g \mid ax + by \).

If we can show \(\exists x, y \in \mathbb{Z} \) st. \(g = ax + by \), then \(g \) will have to be the smallest positive integer expressed.

\[
22x + 60y = \gcd(22, 60)
\]

First find the \(\gcd \):

\[
60 = 2 \times (22) + 16
\]
\[
22 = 1 \times 16 + 6
\]
\[
16 = 2 \times 6 + 4
\]
\[
4 = 1 \times 4 + 0
\]

\(\gcd = 4 \).

\[
60 = 2 \times 22 + 16, \quad 16 = 60 - 2 \times 22
\]
\[
22 = 1 \times 16 + 6
\]
\[
b = q_1 \times r_1 + r_2 = a \cdot 1 - b \cdot 0
\]
\[r_2 = b - q_2 r_1 = b - \frac{q_1}{q_2} (a_1 - b_2) \]
\[= -q_2 a + (1 + q_1 q_2) b \]

\[r_3 = \quad \]

\[r_n = \ ? a + \ ? b. \]

\[60 = 2 \times 22 + 16, \quad 16 = a - 2b \]
\[22 = 1 \times 16 + 6, \quad 6 = 3b - a \]
\[16 = 2 \times 6 + 4, \quad 4 = 16 - 2 \times 6 = 3a - 8b \]
\[2 = -4a + 11b. \]

\[\]
\[a = q_1 b + r_1 \]
\[b = q_2 r_1 + r_2 \]
\[r_1 = q_3 r_2 + r_3 \]
\[\]
\[r_{n+2} = q_n r_{n+1} + r_n \]
\[r_{n+1} = q_n r_n \]

\[a = q_1 b + r_1, \quad r_1 = a - 2b \]
\[b = q_2 r_1 + r_2, \quad r_2 = b - q_2 r_1 \]
\[r_1 = r_3 r_2 + r_5, \quad r_5 = r_1 - q_3 r_2 \]
\[= (a - q_2 b) - q_3 (-q_2 a + q_2 b) \]
\[= (1 + q_3 q_2) a + (-1 - q_2 q_3) b \]

\[\text{QED} \]

If \(\gcd(a, b) = 1 \), we say they're relatively prime.

If \(\gcd(a, b) = 1 \),

\[ax + by = 1 \]
has a soln \(x, y \in \mathbb{Z} \).

So, we can hit any integer, \(n \).

\[ax + by = 1, \quad a(nx) + b(ny) = n \]

More generally,

\[ax + by = n \] has soln \(\iff \)

\[n = a \text{ multiple of } \gcd(a, b) \].
Prime factorization

Lemma: Let \(p \) be a prime. And \(p \mid ab \). Then \(p \mid a \) or \(p \mid b \).

Proof: If \(p \nmid a \), we're done.
So assume \(p \nmid a \). Then
\[
\gcd(p,a)\mid p, \quad \gcd(p,a)\mid a
\]
So \(\gcd(p,a) = p \) or \(1 \). If \(p \), then \(p \mid a \)
which we assume is not the case.
We can solve
\[
a x + p y = 1, \quad \text{for } x, y \in \mathbb{Z}
\]
Multiply by \(b \)
\[
ab x + pb y = b
\]
\(p \mid pb y \), \(p \mid ab x \) since \(p \mid ab \).
So \(p \mid b \). QED
Theorem If \(p \mid (a_1, \ldots, a_n) \), \(p \) prime then \(p \mid a_1 \), or \(p \mid a_2 \) or \(\ldots \) or \(p \mid a_n \).

Proof If \(p \mid a_1 \), we're done.

So assume \(p \nmid a_1 \).

\[p \mid a_1 a_2 \ldots a_n = a_1 (a_2 \ldots a_n) \]

by the lemma it divides \(p \mid a_2 \ldots a_n \).

\[\text{Fundamental Theorem of Arithmetic} \]

Every \(n \geq 2 \) can be factored into primes

\[n = p_1 \ldots p_k \]

in exactly (up to rearranging the order of the primes)
Modular Arithmetic

Let \(n \in \mathbb{N} \), \(n > 1 \).
We say \(a, b \in \mathbb{Z} \)
\(a \equiv b \mod n \) if \(n \mid (a - b) \)

Examples

\[n = 3 \]
\[\ldots -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, \ldots \]

Every integer \(a \equiv 0 \mod 3 \)
or \(1 \)

Thus \(0, 1, 2 \) is the remainder of \(a \) after dividing by 3.

\[n = 2 \]
\[0, 1 \]

\[n = 4 \]
\[0, 1, 2, 3 \mod 4 \]
Let \(n \) be \(\geq 1 \).

The set \(\mathbb{Z} / n \mathbb{Z} \) means \(\{0, 1, 2, \ldots, n-1\} \) but thought of as the remainders you get in dividing by \(n \).

That you can add, and multiply.

\[
\begin{align*}
0+0 & \equiv 0 \mod 2 & \text{even} + \text{even} &= \text{even} \\
0+1 & \equiv 1 \mod 2 & \text{even} + \text{odd} &= \text{odd} \\
1+1 & \equiv 0 \mod 2 & \text{odd} + \text{odd} &= \text{even}
\end{align*}
\]

\[
\begin{align*}
0 \cdot 0 & \equiv 0 \mod 2 & \text{even} \cdot \text{even} &= \text{even} \\
0 \cdot 1 & \equiv 0 \mod 2 & \text{even} \cdot \text{odd} &= \text{even} \\
1 \cdot 1 & \equiv 1 \mod 2 & \text{odd} \cdot \text{odd} &= \text{odd}
\end{align*}
\]

\[
\begin{pmatrix}
0 & 1 & 2 \\
1 & 2 & 0 \\
2 & 0 & 1
\end{pmatrix}
\]
\[\begin{array}{cccc}
0 & 1 & 2 & 3 \\
0 & 0 & 1 & 2 \\
1 & 2 & 3 & 0 \\
2 & 3 & 0 & 1 \\
3 & 0 & 1 & 2 \\
\end{array} \]

\[\begin{array}{cccc}
0 & 1 & 2 & 3 \\
0 & 0 & 0 & 0 \\
1 & 0 & 1 & 2 \\
2 & 0 & 2 & 0 \\
3 & 0 & 3 & 2 \\
\end{array} \]

Q, R, C

2) \(\mathbb{Z} / n \mathbb{Z} \) is a ring, \(R \)

- commutative, associative
- additive inverses
- commutative, associative

\[\text{It distributes over addition} \]

\[\text{ie, } a \cdot (b + c) = ab + ac. \]

If \(\forall a \in R, \ a \neq 0 \), \(\exists b \in R \) s.t.

\[ab = 1, \text{ then } R \text{ is called a field.} \]