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Foreword and postscript

s manuscript that follows was written fifteen years ago. On balance, though,
formal field theory has evolved less quickly than I expected, and to my
‘tind the difficulties which kept me from finishing the paper are still not alto-
ether elucidated.

y aim when I began the work was fairly narrow. I was not trying to
ivate the study of conformal field theory: I simply wanted to justify my
posed definition, on the one hand by showing that it did encode the usual
icture of local field operators and their vacuum expectation values, and on
‘other hand by checking that all the known examples of conformal theories
d fit the definition. As far as the first task is concerned, the crucial part of the
er is §9, where local fields are defined and studied. It was the second task
sthit held me up. The known theories are

. the o-model of a torus, or ‘free bosons compactified on a torus’,

. free fermions,

. the Wess—Zumino-Witten theory for a compact Lie group,

. theories obtained from WZW theories by the ‘coset’ construction of
- Goddard, Kent, and Olive, ’

. theories obtained from the preceding ones by the ‘orbifold’ construc-
tion.

.__oul.d stress that this is a list of explicit constructions, not a classification
eories. It ignores supersymmetry, and also what I would now call ‘non-
act’ theories.) The crucial case is the WZW theory, which reduces to the
sentation theory of loop groups. In my formulation, one must construct
odular functor’, and prove that it is unitary. I was unable to do this. The
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Have a trace-class semigroup (U7 = Usx(o,11}1>0 actmg on each vector space
Hg-we can define complete topological vector spaces Hg and Hs with maps

their method is very long and indirect — the book is hxghly non-selfcontai
resting heavily on the equivalence of categories between representauon o
loop groups and representations of quantum groups at roots of unity. I
hope that a more direct treatment of this beautiful subject will be found.

Another deficiency of my approach is discussed in §9: the axioms do™not;
seem to imply that the infinitesimal deformations of a theory are given
local fields, and so I could not say anything rigorous about the moduli sp:
of theories. One way to deal with this problem is by extending the two- €r
structure of my definition to a three-tier structure which includes axioms a
cutting a circle into intervals. The paper by Stolz and Teichner in this voll
goes some way towards carrying out this programme. 7

[:Is—>Hs—) ﬁs

ch are injective with dense images and make Hs into a rigged vector space
the sense of Gelfand [GV] In particular, Hg and Hs are nuclear. It is
€asy to see that Hs and HS are canonically dual (for details, see page 15 of
cture 1 of [S4]). In the light of these remarks the missing Appendix A is not
ed. .
‘theory (H U) is unitary if there is given a natural isomorphism Hs — H 5
hich makes Hs into a pre-Hilbert space with Hg as its completion. (‘Natoral’
means that Uy = Uj.) In the manuscript the ‘positive’ part of the
éflection-positivity condition was accidentally omitted.

I shall make some more detailed comments section by section.

Section 4

1 no longer like the emphasis I placed on the operation of sewing an outgomng;
to an incoming boundary circle of a cobordism. The associated ‘trace axi
follows readily from the other propeities of a conformal field theory. Th
nition I would give now is as follows.

would now put the remarks about Minkowski space at the end of §4 in a
‘ditferent context. The theories axiomatized in the paper are compact ones: they
orréspond to loops moving in a compact target manifold, and the Hamiltonian
or H such that Ur = ¢HT has discrete spectrum. One can also define
compact theories, for which H has continuous spectrum and the opera-
10 U is not of trace-class. Such a theory is a vector-space-valued functor

‘subcategory G+ of the basic cobordism category C, where €T consists
§fcobordisms every connected component of which has a non-empty out-
g boundary. If one thinks of a conformal field theory as a generalized
iimutative Frobenius algebra, then a theory based on C* is a generalized
i:compact commutative Frobenius algebra’. The basic example of such a
siriicture is the cohomology algebra of a non-compact manifold. (The category
\'jvas introduced by Tillmann in [T], and also occurs in the papers of Cohen
Sullivan in this volume.)

A (not necessarily unitary) conformal field theory (H, U) consists
pieces of data:

1. A projective functor § — Hs from the category of closed o
smooth 1-manifolds to locally convex complete topological
spaces, which takes disjoint unions to tensor products, and

2. For each oriented cobordism X, with conformal structure, from 5
aray Uy in the space of trace-class linear maps Hs, — Hs,, sub

(a) Uxrox = Uxr o Ux when cobordisms are composed, and
(®) Uxux = Ux @ Uy

Furthermore, Uy must depend smoothly on the conformal structure of

now feel more confident than I did that the framework of the manuscript
jpropriate for describing quantum field theories which are not conformally
iiriant, and not necessarily 2-dimensional. But the remarks on pages 27-28
d be modified. For a d-dimensional theory Cpeuic should be the cate-
whose objects are germs § of oriented Riemannian d-manifolds along
jpact (d — 1)-manifolds S (i.e. equivalence classes of neighbourhoods of
‘a d-manifold), and whose morphisms are oriented Riemannian cobor-
ns. When one has a theory based on this category the vector space Hy will
idepend only on a finite jet of the Riemannian structure normal to §: e.g. in
qﬂ{ﬁ,g}] page 33 it is shown that the jet of order [(d — 1)/2] is needed for free

Given the data (H, U), it follows from the representation theory of the'sér
group A that the vector space Hs = Hs,, is honestly — not just projectt
associated to a rigged 1-manifold (S, L) (see page 30), and that a specifi¢
erator Uy ¢ : Hsy, Lo — Hs, 1, is associated to a cobordism X togethe;
a point £ in the determinant line Dety (which in turn depends on the rig
of 9X). :

1t also follows from the definition that Hj is canonically dual to Hy:(and
that Uy : H§| - Hgo is the transpose of Ux). More precisely, becausﬂ
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Section 5 i.: Ex — Ey. Restricting this structure to closed surfaces X and their
I would now (roughly following suggestions of Deligne) think of a moth bordisms gives a 3-dimensional topological field theory, which in the loop
functor as a category-valued topological field theory. Such a theory assocites dup example is Chern—Simons theory.
a C-linear category Rs to each closed oriented 1-manifold S, and an addi s x
functor nfortunately there is a gap in the proof of the crucial Proposition (5.4) —
hé exjstence of a projectively flat connection in the modular functor — for I
Ex:Rsp = Rsy tred to a non-existent appendix for a proof that the Lie algebra Vect(X) of

to each cobordism X from Sp to S;. (No conformal structure is involved olomorphic vector fields on a non-closed surface X has no finite-dimensional

but we should require the manifolds to be rigged in the sense of (5.10 aptojective representations. To fill the gap, notice that if X has genus zero
page 30.) The functor § ~> Rs must take disjoint unions to tensor products £ n Vect(X) contains the Virasoro algebra, which certainly has no finite-
categories: the axioms ensure that each R is a semisimple category with imensional representations. So in that case Vect(X) acts trivially on E(X).
finitely many irreducible objects. More details of this approach can be f in general we can cut X into pieces of genus zero—say X = X U---UXy -
in Lecture 3 of [S4]. The main example is the representation theory of i write
_groups, when R is the category of positive-energy re resentatmns ofa =
group LG at adseﬁmte level lferyH“(%G Z). B EX) =D EX1) 8+ ® EXip):
ere the sum is over appropriate labellings ¢;. This decomposition is com-
ible with the action of Vect(X). But Vect(X) acts on E(X;,y;) via Vect(X;),
TWhlch must act trivially. So Vect(X) acts trivially on E(X).
A more illuminating account of the flat connection, though from a quite dif-
#it point of view, has been given by Hitchin [H1]. Unfortunately his method,
ike mine, is not helpful in establishing unitarity.

s

This perspective is, nevertheless, just a reformulation of what is 1

present manuscript. The set ¢ = @ of labels for a 1-manifold’ =
Sy U ... I S is the set of irreducible objects of Rs, while the func ﬁz
Ex : Rs, — Rs, associated to a cobordism X is given by

Ex(9) =CDEX) @Y
¥

Section 7

ospect, this section does not seem properly motivated. The part con-
éd with finite groups was put in to lead up to a discussion — unfortunately
I written — in §12 of the orbifold construction of theories.
& material fits into the general framework of gauge theories. If a compact
group G acts on a quantum field theory (H, U) —i.e. G acts on each vector
&' Hyg and the maps Ux are G-equivariant — we say ‘the symmetry can be
gaiged’ if the functor (A, U) can be extended from the usual cobordism cat-
@ to the category CF whose objects (S, P) are 1-manifolds § equipped
& principal G-bundle P with a connection, and whose morphisms (X, @)
4re'conformal cobordisms X also equipped with principal G-bundles with con-
Oh. If P is the trivial G-bundle on S then Hs, p, should be the original Hs,
I the action of G as a group of automorphisms of (S, Po) should induce the
imven G-action on Hs.
$'a generic example, one can think of a sigma-model whose target space M
% G-action. Then Hy is the space of L? functions on the mapping space

in the notation of the manuscript, where ¢ € ®5, and ¥ € Py, d
the right-hand side the object ¥ is tensored with the finite-dimensiona
tor space E(Xqy).
In terms of the category-valued theory (R, E) what I called a weakly
formal’ field theory assigns to each 1-manifold § an additive functor Hs
Rs to topological vector spaces, and to each cobordism X from So to
transformation of functors

Ux : Hsy — Hs o Ex.

(The functors Hs must have coherent equivalences Hs @ Hg — Hgyj
the transformations Uy must be compatible, as usual, with concatenatio
disjoint union of cobordisms.)

Kontsevich’s argument from [K] shows that a category-valued theoi
tends to a ‘3-tier’ theory in which a 3-dimensional cobordism W bél
two cobordisms X, X’ from Sp to §; defines a transformation of fir
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for the mod 2 grading of the fermionic Fock space expresses the action of the
iitomorphisms of the spin bundles on § 1y, The quotient theory turns out to
é equivalent to the sigma-mode] whose target is a circle of a specific length
which is ~/Z in the notation of this paper): this is the basic boson-fermion
rrespondence of 2-dimensional field theory. But the relevant point at the mo-

ient is that the line

Map(S; M), while Hg p is the space of L? functions on the mapping spi
Mapg (P; M) of G-equivariant maps, or equivalently, on the space of secti
of the bundle on § with fibre M associated to the principal bundle P.

When the action can be gauged one can hope to construct a ‘quotient’ thedry,
(HC,U%). An element of Hs is a function ¥ which associates to each
bundle P on § an element yp € Hs, p, and is gauge-invariant in the s ;
that an isomorphism P ~> P’ takes ¥p to ¥ p:. The operator Ux should:
principle be an integral operator whose kernel U f (Po; Py) is the integral
Ux, g over the isomorphism classes of bundles O on X which restrict to Py
ondX.

If G is a finite group any bundle has a unique connection, and there are oiily;
finitely many G-bundles on any manifold. Thus we find

G
H = P (H p )%
lg]

D_etgL ® Detg,L

ere Dets, is the determinant line of the 3-operator of a spin bundle L on
X -is independent of L and is a square-root of Dety ® Dety. The only way I
know of proving this is by showing that the modular functor

Ex = @ Detj,
L

where Py is the bundle on 5! with holonomy g € G, and Z, is the centrali
of g in G, while the sum is over the conjugacy classes of elements g. In
case U (Py, Py) is simply a finite sum.

In the case of conformal field theories, however, we must be careful
each operator Uy,g = Uy, g,¢ will depend on a choice of a point & of alin
Lx,g associated to (X, @), and we can make the quotient construction onl
we can identify the lines Ly, o for different bundles Q on X.

tnitary.
‘Finally, 1 should like to make a few remarks concerning Propositions 7.7

d 7.8. As it stands, Proposition 7.7 is almost trivial, for the set $(X, dpX)
‘spin structures on X trivialized at the base~pomts 80X is an affine space of
1(X, 90X ; F2), and so the vector space Hy of affine-linear functions from
(X, 9X) to IF, is an extension of Hx = Hi(X, 90X; IFy) by IF, whose set of
llttmgs is $(X, 8pX). The point is that Hy — which depends of course on the
ice of 89X — can be constructed from Hx by means of an intersection form.
s is straightforward when 3X has one component, but more complicated
herwise. The closed surface X* is canonically associated to X, but both the
omorphlsms Hi(X, 8X) = H|(X*) and 8(X, 8X) = $(X*) depend on
& choice of the tree y, which can be fixed by choosing a cychc order of the
omponents of 3.X.

Turning to 7.8, a more conceptual proof of the existence of the extension
C% by I, should be as follows. The basic extension of C} by C" arises

ifting the action of C} on the restricted Grassmannian Gr of Q1 0OX; L)
the determinant bundle on Gr. A spin structure on X gives us a fixed
oint of the action on Gr, and hence a splitting of the extension. But the
te of Det at any one of these fixed points is a square-root of the determi-
iiit line of X, and so the basic extension contains a subextension consist-
f the elements which act trivially on Dety. I do not see, unfortunately,
- . - . tw to relate this argument to the one using cocycles which can be extracted
Hsi = Fa®F4)"" @ (Fp @ Fp)™*" in §12.

The passage from @€ to the modular functor does not look interesting
is presented, Its significance is that a chiral theory with a group action,
ing, say, from an even unimddular lattice with a finite symmetry group ¢
gives us a theory based on an extension of €¢ by determinant lines L
which do depend on Q as well as X. If one shows that the associated i
ular functor is unitary one can tensor the chiral theory with its conjuga
obtain a genuine conformal theory by the method of §5. In practice it is e
to show the modular functor is unitary than to deal with the individual li
Lxg®Lxg.

The same remarks apply to the discussion of spin structures. In (8.
describe {he theory F of a free chiral fermion, which is based on the™
egory CP'", The standard theory of free fermions, also based on (‘Z’pi'i.

F ® F. This has a quotient theory, formed by summing over spin structiires;
which has "
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Section 8

Although the alternative description of the fermionic¢-Fock space on page
is often useful, to call it a ‘bosonic’ description is misleading, as the chi
theories in question do not correspond to anything described by a recognizib
bosonic Lagrangian. They are at best chiral fragments of bosonic theories.

ténsion by C* corresponding to the chosen level. If X is a Riemann sur-
e with (outgoing) boundary, write Tx for the group of holomorphic maps
<5 Tg, which can be identified with a subgroup of Tyx, and even of Tox
e cocycle vanishes identically on it. If ¢ = (o1, ..., @) is a labelling of
components of 9 we define the modular functor, as explained on pages

<40, by

={Ep ® -+ ® Eg )X,
Section 10 E(Xp) = (Eg ® -+ ® Eg;)

The parameter space M 4 described on page 129 is usually called the Naj
moduli space. It is believed to be a complete component of the moduli sp
of conformal theories (in the sense of algebraic geometry: it intersects
components). The 2-form w arising in the sigma-model description of the'th
ories is called the B-field (cf. [S5]). The relation between different pairs (T
which give rise to the same field theory is called T-duality.

m the representation theory of Heisenberg groups we know that this space
1 irreducible representation of T/ Tx, where T is the centralizer of Tx
3x. One easily shows that i‘,—}- / Tx is the Heisenberg group made from the
te group H' (X; A) with its non-degenerate cup-product pairing. This gives
i very explicit description of the modular functor from which all desired
foperties, including unitarity, can be read off,

The other topic of §12 was to be the chiral factorization of the sigma-model
rational torus T = ¢/ A, i.e. one for which the inner product is rational on
5i', equivalently, such that Ag = AN A has finite index in A and AD. Let
bé the torus £/ Ag. We have an exact sequence

Section 12

I intended this section to be considerably longer, though — unlike §11 —
not held up by any mathematical difficulties. The missing material was i
parts. The first would have described the WZW model when the compact gronps
is a torus T = t/A. The central extension LT of the loop group LT — cil

the level of the theory — is determined by an inner product on ¢ for which
lattice A is integral and even. The commutator pairing is given by (12.1);
with products replaced by the inner product of t. To construct LT one nt
its cocycle, obtained by choosing a bilinear form B on £, integral on A,'§
that '

B(x,y) + B(y, x).= (x, y).

This can be done because A is an even lattice, and, up to isomorphisni;
choice of B is immaterial.

The centre of £7 is T x A, where A is the finite subgroup A%/A of
group T of constant loops. (Here

0— A — LiepTo % LrgneTo — LT x LT > A—0
éte the middle map is (f, g) = (f + &, f — §), and now

1 1.
S - Ao.
A (2A+2A)/0

i-standard cocycle on LT x LT* pulls back to a praduct cocycle on
nTo % LrightTo, and each factor acquires. a central extension with cen-
A (One should think of Tp as to/Ao, where o = ¢, but with its inner
iduct multiplied by 2.) The projective irreducible representation Hgi of
% £T* which is the Hilbert space of the sigma-model of T' decomposes
r LientTo X Liight To as €D E}, ® E,, where ¢ runs through the characters of
d E,, is the corresponding irreducible representation of LyigntTo. It is easy
eck that the sigma-model of T is thereby identified as the WZW model
0e~ best-known case is when T = R/RZ is a circle of circumference R.
is is rational if R? is rationdl. If R2 = p/q, where p and g are coprime
f6gers. Then Ao = (pq)'/*Z, and A is a cyclic group of order 2pg: the
model is that of T at level 2pq.

Al={uet:{u, ) eZ forall A € A}.)

In any irreducible representation of LT the subgroup A acts by a chara
and there is precisely one irreducible positive—energy representation E,
the given cocycle for each character ¢ € A.

The character group A is thus the set of labels for the modular funct
fined as follows. If § is an oriented 1-manifold let us write Ts for the ct
" plexification of the group of smooth maps § — T, and Ts for the
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(iv) Some, at least, of Vaughan Jones's new represeutations of

groups arise from field theories, and his classification of
Graeme Segal

étors in von Neumamn algebras is reflected in the classification
St. Gatherine's College, Oxford.

eld theories.

v) The new "elliptic” cohomology theory of Landweber-Stong and
The object of this work is to present a definition of a

ine is undoubtedly connected with conformal field theory, though
two-dimensional conformally invariant quantum field theory in

¥ u;connection is still mysterious.
mathematical language, and to describe the basic examples. I hope thisi:il %
wlill be helpful to mathematicians who are interested in physics; but

This work is intended to be a coherent and self-contained
apart from that there are several areas of pure mathematics vhere

tion of material which is essentially well known. It contains no
conformal field theories seem to play a fundamental but quite

g isults. The different sections are fairly independent, and aimed
unexpected role. I shall give five examples,
. 1ightly different readers: they are not meant to be read in order.
cent wave of interest in conformal field theory began with the
(1) The "monster™ group of Griess-Fischer is the group of

' known paper [BPZ] of Belavin, Polyakov, and Zamolodchikov, but
automorphisms of a fairly simple and natural conformal field theory!

’ not attempted the difficult task of lndicating the history of
The graded representation of the monstex group whose Poincare seriles

ﬁject, or the provenance of particular ideas. 1 should like to
the modular function j is the basic Hilbert space of the field theoky’

and Griess’'s non-assoclative algebra is also part of its structure

(ii) The representation theory of loop groups and of the grou
Diff(S') of diffeomorphisms of the circle is greatly illuminated b
conformal field theory. In particular the modularity properties o

characters of the representations fall into place.

(1ii) Field theoxy shows how the representations of Diff(S') af
related to the geometry of the moduli spaces of Riemann surfaces.
the universal cemtral extension of DLff(8') "is" the determinant lin
of the 3—operator on Riemann surfaces; and Mumford's classificatio

the holomorphic line bundles on moduli spaces can be simply proved
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