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Foreword and postscript

s manuscript that follows was written fifteen years ago. On balance, though,
formal field theory has evolved less quickly than I expected, and to my
‘tind the difficulties which kept me from finishing the paper are still not alto-
ether elucidated.

y aim when I began the work was fairly narrow. I was not trying to
ivate the study of conformal field theory: I simply wanted to justify my
posed definition, on the one hand by showing that it did encode the usual
icture of local field operators and their vacuum expectation values, and on
‘other hand by checking that all the known examples of conformal theories
d fit the definition. As far as the first task is concerned, the crucial part of the
er is §9, where local fields are defined and studied. It was the second task
sthit held me up. The known theories are

. the o-model of a torus, or ‘free bosons compactified on a torus’,

. free fermions,

. the Wess—Zumino-Witten theory for a compact Lie group,

. theories obtained from WZW theories by the ‘coset’ construction of
- Goddard, Kent, and Olive, ’

. theories obtained from the preceding ones by the ‘orbifold’ construc-
tion.

.__oul.d stress that this is a list of explicit constructions, not a classification
eories. It ignores supersymmetry, and also what I would now call ‘non-
act’ theories.) The crucial case is the WZW theory, which reduces to the
sentation theory of loop groups. In my formulation, one must construct
odular functor’, and prove that it is unitary. I was unable to do this. The
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Have a trace-class semigroup (U7 = Usx(o,11}1>0 actmg on each vector space
Hg-we can define complete topological vector spaces Hg and Hs with maps

their method is very long and indirect — the book is hxghly non-selfcontai
resting heavily on the equivalence of categories between representauon o
loop groups and representations of quantum groups at roots of unity. I
hope that a more direct treatment of this beautiful subject will be found.

Another deficiency of my approach is discussed in §9: the axioms do™not;
seem to imply that the infinitesimal deformations of a theory are given
local fields, and so I could not say anything rigorous about the moduli sp:
of theories. One way to deal with this problem is by extending the two- €r
structure of my definition to a three-tier structure which includes axioms a
cutting a circle into intervals. The paper by Stolz and Teichner in this voll
goes some way towards carrying out this programme. 7

[:Is—>Hs—) ﬁs

ch are injective with dense images and make Hs into a rigged vector space
the sense of Gelfand [GV] In particular, Hg and Hs are nuclear. It is
€asy to see that Hs and HS are canonically dual (for details, see page 15 of
cture 1 of [S4]). In the light of these remarks the missing Appendix A is not
ed. .
‘theory (H U) is unitary if there is given a natural isomorphism Hs — H 5
hich makes Hs into a pre-Hilbert space with Hg as its completion. (‘Natoral’
means that Uy = Uj.) In the manuscript the ‘positive’ part of the
éflection-positivity condition was accidentally omitted.

I shall make some more detailed comments section by section.

Section 4

1 no longer like the emphasis I placed on the operation of sewing an outgomng;
to an incoming boundary circle of a cobordism. The associated ‘trace axi
follows readily from the other propeities of a conformal field theory. Th
nition I would give now is as follows.

would now put the remarks about Minkowski space at the end of §4 in a
‘ditferent context. The theories axiomatized in the paper are compact ones: they
orréspond to loops moving in a compact target manifold, and the Hamiltonian
or H such that Ur = ¢HT has discrete spectrum. One can also define
compact theories, for which H has continuous spectrum and the opera-
10 U is not of trace-class. Such a theory is a vector-space-valued functor

‘subcategory G+ of the basic cobordism category C, where €T consists
§fcobordisms every connected component of which has a non-empty out-
g boundary. If one thinks of a conformal field theory as a generalized
iimutative Frobenius algebra, then a theory based on C* is a generalized
i:compact commutative Frobenius algebra’. The basic example of such a
siriicture is the cohomology algebra of a non-compact manifold. (The category
\'jvas introduced by Tillmann in [T], and also occurs in the papers of Cohen
Sullivan in this volume.)

A (not necessarily unitary) conformal field theory (H, U) consists
pieces of data:

1. A projective functor § — Hs from the category of closed o
smooth 1-manifolds to locally convex complete topological
spaces, which takes disjoint unions to tensor products, and

2. For each oriented cobordism X, with conformal structure, from 5
aray Uy in the space of trace-class linear maps Hs, — Hs,, sub

(a) Uxrox = Uxr o Ux when cobordisms are composed, and
(®) Uxux = Ux @ Uy

Furthermore, Uy must depend smoothly on the conformal structure of

now feel more confident than I did that the framework of the manuscript
jpropriate for describing quantum field theories which are not conformally
iiriant, and not necessarily 2-dimensional. But the remarks on pages 27-28
d be modified. For a d-dimensional theory Cpeuic should be the cate-
whose objects are germs § of oriented Riemannian d-manifolds along
jpact (d — 1)-manifolds S (i.e. equivalence classes of neighbourhoods of
‘a d-manifold), and whose morphisms are oriented Riemannian cobor-
ns. When one has a theory based on this category the vector space Hy will
idepend only on a finite jet of the Riemannian structure normal to §: e.g. in
qﬂ{ﬁ,g}] page 33 it is shown that the jet of order [(d — 1)/2] is needed for free

Given the data (H, U), it follows from the representation theory of the'sér
group A that the vector space Hs = Hs,, is honestly — not just projectt
associated to a rigged 1-manifold (S, L) (see page 30), and that a specifi¢
erator Uy ¢ : Hsy, Lo — Hs, 1, is associated to a cobordism X togethe;
a point £ in the determinant line Dety (which in turn depends on the rig
of 9X). :

1t also follows from the definition that Hj is canonically dual to Hy:(and
that Uy : H§| - Hgo is the transpose of Ux). More precisely, becausﬂ
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Section 5 i.: Ex — Ey. Restricting this structure to closed surfaces X and their
I would now (roughly following suggestions of Deligne) think of a moth bordisms gives a 3-dimensional topological field theory, which in the loop
functor as a category-valued topological field theory. Such a theory assocites dup example is Chern—Simons theory.
a C-linear category Rs to each closed oriented 1-manifold S, and an addi s x
functor nfortunately there is a gap in the proof of the crucial Proposition (5.4) —
hé exjstence of a projectively flat connection in the modular functor — for I
Ex:Rsp = Rsy tred to a non-existent appendix for a proof that the Lie algebra Vect(X) of

to each cobordism X from Sp to S;. (No conformal structure is involved olomorphic vector fields on a non-closed surface X has no finite-dimensional

but we should require the manifolds to be rigged in the sense of (5.10 aptojective representations. To fill the gap, notice that if X has genus zero
page 30.) The functor § ~> Rs must take disjoint unions to tensor products £ n Vect(X) contains the Virasoro algebra, which certainly has no finite-
categories: the axioms ensure that each R is a semisimple category with imensional representations. So in that case Vect(X) acts trivially on E(X).
finitely many irreducible objects. More details of this approach can be f in general we can cut X into pieces of genus zero—say X = X U---UXy -
in Lecture 3 of [S4]. The main example is the representation theory of i write
_groups, when R is the category of positive-energy re resentatmns ofa =
group LG at adseﬁmte level lferyH“(%G Z). B EX) =D EX1) 8+ ® EXip):
ere the sum is over appropriate labellings ¢;. This decomposition is com-
ible with the action of Vect(X). But Vect(X) acts on E(X;,y;) via Vect(X;),
TWhlch must act trivially. So Vect(X) acts trivially on E(X).
A more illuminating account of the flat connection, though from a quite dif-
#it point of view, has been given by Hitchin [H1]. Unfortunately his method,
ike mine, is not helpful in establishing unitarity.

s

This perspective is, nevertheless, just a reformulation of what is 1

present manuscript. The set ¢ = @ of labels for a 1-manifold’ =
Sy U ... I S is the set of irreducible objects of Rs, while the func ﬁz
Ex : Rs, — Rs, associated to a cobordism X is given by

Ex(9) =CDEX) @Y
¥

Section 7

ospect, this section does not seem properly motivated. The part con-
éd with finite groups was put in to lead up to a discussion — unfortunately
I written — in §12 of the orbifold construction of theories.
& material fits into the general framework of gauge theories. If a compact
group G acts on a quantum field theory (H, U) —i.e. G acts on each vector
&' Hyg and the maps Ux are G-equivariant — we say ‘the symmetry can be
gaiged’ if the functor (A, U) can be extended from the usual cobordism cat-
@ to the category CF whose objects (S, P) are 1-manifolds § equipped
& principal G-bundle P with a connection, and whose morphisms (X, @)
4re'conformal cobordisms X also equipped with principal G-bundles with con-
Oh. If P is the trivial G-bundle on S then Hs, p, should be the original Hs,
I the action of G as a group of automorphisms of (S, Po) should induce the
imven G-action on Hs.
$'a generic example, one can think of a sigma-model whose target space M
% G-action. Then Hy is the space of L? functions on the mapping space

in the notation of the manuscript, where ¢ € ®5, and ¥ € Py, d
the right-hand side the object ¥ is tensored with the finite-dimensiona
tor space E(Xqy).
In terms of the category-valued theory (R, E) what I called a weakly
formal’ field theory assigns to each 1-manifold § an additive functor Hs
Rs to topological vector spaces, and to each cobordism X from So to
transformation of functors

Ux : Hsy — Hs o Ex.

(The functors Hs must have coherent equivalences Hs @ Hg — Hgyj
the transformations Uy must be compatible, as usual, with concatenatio
disjoint union of cobordisms.)

Kontsevich’s argument from [K] shows that a category-valued theoi
tends to a ‘3-tier’ theory in which a 3-dimensional cobordism W bél
two cobordisms X, X’ from Sp to §; defines a transformation of fir



428 . Segal Foreword and postscript ‘ 429

for the mod 2 grading of the fermionic Fock space expresses the action of the
iitomorphisms of the spin bundles on § 1y, The quotient theory turns out to
é equivalent to the sigma-mode] whose target is a circle of a specific length
which is ~/Z in the notation of this paper): this is the basic boson-fermion
rrespondence of 2-dimensional field theory. But the relevant point at the mo-

ient is that the line

Map(S; M), while Hg p is the space of L? functions on the mapping spi
Mapg (P; M) of G-equivariant maps, or equivalently, on the space of secti
of the bundle on § with fibre M associated to the principal bundle P.

When the action can be gauged one can hope to construct a ‘quotient’ thedry,
(HC,U%). An element of Hs is a function ¥ which associates to each
bundle P on § an element yp € Hs, p, and is gauge-invariant in the s ;
that an isomorphism P ~> P’ takes ¥p to ¥ p:. The operator Ux should:
principle be an integral operator whose kernel U f (Po; Py) is the integral
Ux, g over the isomorphism classes of bundles O on X which restrict to Py
ondX.

If G is a finite group any bundle has a unique connection, and there are oiily;
finitely many G-bundles on any manifold. Thus we find

G
H = P (H p )%
lg]

D_etgL ® Detg,L

ere Dets, is the determinant line of the 3-operator of a spin bundle L on
X -is independent of L and is a square-root of Dety ® Dety. The only way I
know of proving this is by showing that the modular functor

Ex = @ Detj,
L

where Py is the bundle on 5! with holonomy g € G, and Z, is the centrali
of g in G, while the sum is over the conjugacy classes of elements g. In
case U (Py, Py) is simply a finite sum.

In the case of conformal field theories, however, we must be careful
each operator Uy,g = Uy, g,¢ will depend on a choice of a point & of alin
Lx,g associated to (X, @), and we can make the quotient construction onl
we can identify the lines Ly, o for different bundles Q on X.

tnitary.
‘Finally, 1 should like to make a few remarks concerning Propositions 7.7

d 7.8. As it stands, Proposition 7.7 is almost trivial, for the set $(X, dpX)
‘spin structures on X trivialized at the base~pomts 80X is an affine space of
1(X, 90X ; F2), and so the vector space Hy of affine-linear functions from
(X, 9X) to IF, is an extension of Hx = Hi(X, 90X; IFy) by IF, whose set of
llttmgs is $(X, 8pX). The point is that Hy — which depends of course on the
ice of 89X — can be constructed from Hx by means of an intersection form.
s is straightforward when 3X has one component, but more complicated
herwise. The closed surface X* is canonically associated to X, but both the
omorphlsms Hi(X, 8X) = H|(X*) and 8(X, 8X) = $(X*) depend on
& choice of the tree y, which can be fixed by choosing a cychc order of the
omponents of 3.X.

Turning to 7.8, a more conceptual proof of the existence of the extension
C% by I, should be as follows. The basic extension of C} by C" arises

ifting the action of C} on the restricted Grassmannian Gr of Q1 0OX; L)
the determinant bundle on Gr. A spin structure on X gives us a fixed
oint of the action on Gr, and hence a splitting of the extension. But the
te of Det at any one of these fixed points is a square-root of the determi-
iiit line of X, and so the basic extension contains a subextension consist-
f the elements which act trivially on Dety. I do not see, unfortunately,
- . - . tw to relate this argument to the one using cocycles which can be extracted
Hsi = Fa®F4)"" @ (Fp @ Fp)™*" in §12.

The passage from @€ to the modular functor does not look interesting
is presented, Its significance is that a chiral theory with a group action,
ing, say, from an even unimddular lattice with a finite symmetry group ¢
gives us a theory based on an extension of €¢ by determinant lines L
which do depend on Q as well as X. If one shows that the associated i
ular functor is unitary one can tensor the chiral theory with its conjuga
obtain a genuine conformal theory by the method of §5. In practice it is e
to show the modular functor is unitary than to deal with the individual li
Lxg®Lxg.

The same remarks apply to the discussion of spin structures. In (8.
describe {he theory F of a free chiral fermion, which is based on the™
egory CP'", The standard theory of free fermions, also based on (‘Z’pi'i.

F ® F. This has a quotient theory, formed by summing over spin structiires;
which has "
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Section 8

Although the alternative description of the fermionic¢-Fock space on page
is often useful, to call it a ‘bosonic’ description is misleading, as the chi
theories in question do not correspond to anything described by a recognizib
bosonic Lagrangian. They are at best chiral fragments of bosonic theories.

ténsion by C* corresponding to the chosen level. If X is a Riemann sur-
e with (outgoing) boundary, write Tx for the group of holomorphic maps
<5 Tg, which can be identified with a subgroup of Tyx, and even of Tox
e cocycle vanishes identically on it. If ¢ = (o1, ..., @) is a labelling of
components of 9 we define the modular functor, as explained on pages

<40, by

={Ep ® -+ ® Eg )X,
Section 10 E(Xp) = (Eg ® -+ ® Eg;)

The parameter space M 4 described on page 129 is usually called the Naj
moduli space. It is believed to be a complete component of the moduli sp
of conformal theories (in the sense of algebraic geometry: it intersects
components). The 2-form w arising in the sigma-model description of the'th
ories is called the B-field (cf. [S5]). The relation between different pairs (T
which give rise to the same field theory is called T-duality.

m the representation theory of Heisenberg groups we know that this space
1 irreducible representation of T/ Tx, where T is the centralizer of Tx
3x. One easily shows that i‘,—}- / Tx is the Heisenberg group made from the
te group H' (X; A) with its non-degenerate cup-product pairing. This gives
i very explicit description of the modular functor from which all desired
foperties, including unitarity, can be read off,

The other topic of §12 was to be the chiral factorization of the sigma-model
rational torus T = ¢/ A, i.e. one for which the inner product is rational on
5i', equivalently, such that Ag = AN A has finite index in A and AD. Let
bé the torus £/ Ag. We have an exact sequence

Section 12

I intended this section to be considerably longer, though — unlike §11 —
not held up by any mathematical difficulties. The missing material was i
parts. The first would have described the WZW model when the compact gronps
is a torus T = t/A. The central extension LT of the loop group LT — cil

the level of the theory — is determined by an inner product on ¢ for which
lattice A is integral and even. The commutator pairing is given by (12.1);
with products replaced by the inner product of t. To construct LT one nt
its cocycle, obtained by choosing a bilinear form B on £, integral on A,'§
that '

B(x,y) + B(y, x).= (x, y).

This can be done because A is an even lattice, and, up to isomorphisni;
choice of B is immaterial.

The centre of £7 is T x A, where A is the finite subgroup A%/A of
group T of constant loops. (Here

0— A — LiepTo % LrgneTo — LT x LT > A—0
éte the middle map is (f, g) = (f + &, f — §), and now

1 1.
S - Ao.
A (2A+2A)/0

i-standard cocycle on LT x LT* pulls back to a praduct cocycle on
nTo % LrightTo, and each factor acquires. a central extension with cen-
A (One should think of Tp as to/Ao, where o = ¢, but with its inner
iduct multiplied by 2.) The projective irreducible representation Hgi of
% £T* which is the Hilbert space of the sigma-model of T' decomposes
r LientTo X Liight To as €D E}, ® E,, where ¢ runs through the characters of
d E,, is the corresponding irreducible representation of LyigntTo. It is easy
eck that the sigma-model of T is thereby identified as the WZW model
0e~ best-known case is when T = R/RZ is a circle of circumference R.
is is rational if R? is rationdl. If R2 = p/q, where p and g are coprime
f6gers. Then Ao = (pq)'/*Z, and A is a cyclic group of order 2pg: the
model is that of T at level 2pq.

Al={uet:{u, ) eZ forall A € A}.)

In any irreducible representation of LT the subgroup A acts by a chara
and there is precisely one irreducible positive—energy representation E,
the given cocycle for each character ¢ € A.

The character group A is thus the set of labels for the modular funct
fined as follows. If § is an oriented 1-manifold let us write Ts for the ct
" plexification of the group of smooth maps § — T, and Ts for the
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The Definition of Gonformal Field Theoxry

(iv) Some, at least, of Vaughan Jones's new represeutations of

groups arise from field theories, and his classification of
Graeme Segal

étors in von Neumamn algebras is reflected in the classification
St. Gatherine's College, Oxford.

eld theories.

v) The new "elliptic” cohomology theory of Landweber-Stong and
The object of this work is to present a definition of a

ine is undoubtedly connected with conformal field theory, though
two-dimensional conformally invariant quantum field theory in

¥ u;connection is still mysterious.
mathematical language, and to describe the basic examples. I hope thisi:il %
wlill be helpful to mathematicians who are interested in physics; but

This work is intended to be a coherent and self-contained
apart from that there are several areas of pure mathematics vhere

tion of material which is essentially well known. It contains no
conformal field theories seem to play a fundamental but quite

g isults. The different sections are fairly independent, and aimed
unexpected role. I shall give five examples,
. 1ightly different readers: they are not meant to be read in order.
cent wave of interest in conformal field theory began with the
(1) The "monster™ group of Griess-Fischer is the group of

' known paper [BPZ] of Belavin, Polyakov, and Zamolodchikov, but
automorphisms of a fairly simple and natural conformal field theory!

’ not attempted the difficult task of lndicating the history of
The graded representation of the monstex group whose Poincare seriles

ﬁject, or the provenance of particular ideas. 1 should like to
the modular function j is the basic Hilbert space of the field theoky’

and Griess’'s non-assoclative algebra is also part of its structure

(ii) The representation theory of loop groups and of the grou
Diff(S') of diffeomorphisms of the circle is greatly illuminated b
conformal field theory. In particular the modularity properties o

characters of the representations fall into place.

(1ii) Field theoxy shows how the representations of Diff(S') af
related to the geometry of the moduli spaces of Riemann surfaces.
the universal cemtral extension of DLff(8') "is" the determinant lin
of the 3—operator on Riemann surfaces; and Mumford's classificatio

the holomorphic line bundles on moduli spaces can be simply proved

432
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§l. Introduction

-

Ugyge = UyeVg - (1.3)

I shall begin with a schematic description of the situatio natural, given a Riemann surface X with a boundary comsisting

want to axiomatize. Suppoge that a string in the form of a circ -eircles, to interpret the integral (1.2) over maps X > M as

is moving about in a manifold M. The configuration space of th ifnel of an operator which transforms functions of m Lloops to

is then the loop space LM, and the quantum states are the rays i fictions of n loops, i.e. as the kernel of an operator

Hilbert space ¥ of complex-valued wave functions on LH. The evo.
of the system is described by a one-parameter group {emt) of un o - Hem H#oo
operators in #. If T > O the contraction operator e 8T {5 an in

operatox in #: it think of this operator as associated with a physical process

h m strings evolve into n strings. Ve still expect the

@ Thm = [ K wedy
LM

sition rule (1.3) to hold when it makes sense.

e structure so far described is simply a functor from a certain

where the kermel Ky is of the form _egqry: ¥ to the category of Hilbert spaces: the objects of ® are

mpact one-dimensional manifolds (i.e. finite disjoint unions of

Kplv,y') = I 05 g5

.,' and a morphism from S to S, 1s a Riemamm surface X whose
3 is the disjoint union §, it §,. Gomposition of morphisms in
the integral being over all paths ¢ : [0,T] -+ LM from y to 7; {4 defined by sewing the surfaces together along the common part of

over all maps ¢ : S' X 01} » M which restrict to 7,7y’ at th boundaries., A functor assigns a Hilbert space '#S to each

of the cylinder. The crucial property of the fumctional 5 is 31d, and an operator Uy '3{'.3 > g{:s to each surface X with
0 1

depends only on the conformal structure of the surface X = §' U8, A conformal field theory 1s no more and no less than

the basic example is S(o) = % I |IDo'|l2.
L

Wnctor.' It must satisfy a number of simple conditioms

Needless to say, the preceding integrals have no precise s ¢d by the formulae (1.1) and (1.2). The most obvious is that

We extract from the discussion simply the.Hilbert space % and thd

of an operator in 3 depending not so much on a numbex.T as on -

¢ _ ' : ﬁso"sl ﬁso ® 5?Sl
Riemann surface X = §* x [0,T}. We could as well or as 111 perfl
integral (1.2) over maps defined on any Riemamn surxface X whose
boundary consists of two circles, and so obtain an evolution op

Uy @ 8L 5 ¥ . If two such surfaces X,X' are joined end-to-e

form a new one then we expect the semigroup property

ly speaking, a projective functor: ome should allow a scalar

(s $om 77 2N
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Another is that if X is a surface with exactly two boundary circle e group Gonf(s' X R) is a Z-fold covering group of

then the trace of the operator Uy depends only on the closed suxf '§7y) x DLff(S?). For §' X R possesses a circle S!'{ of right-moving

got by sewing the two ends of X together. The motivation for th

that integrating Ky(7y,y) over v € LM amounts to integrating e's.

aths (8 = t-a : o € Sg) and a circle §] of left-moving paths

tie @ o € 511); these two circles are permuted by any conformal

v
over all maps ¢ : X - M.) This property implies the modulari ¢rphism, and so we have a homomorphism

the partition fumction of the theory, which is defined as the trace

the operator e HT associated to the cylinder Xy = §' x (0,T]. Be Conf(s' x R) =+ DiE(S]) x DIEE(S}) .

v

A d
the toril XT and Xl /T are conformally equivalent the partition fi

satisfies clearly surjective with kermel Z. An irreducible projective

antation W of conf(S' X R} decomposes canonically as a tensor

-HTy -H/T
tr(ETT) = tr(e™/ ) 9 = ¥, @ %5 of representations of DLEE(S]) and DIff(Sg). One

interesting questions to ask about conformal field theories is

' decompose into left-handed and right-handed theories. These

There is another way to approach conformal imvariance. giled chiral theorles are to a mathematician — not to a physicist -

Hilbert space 3 - s’;st of the theo.ry is thought of as the qua isic objects of study. They are rigid in the same sense as the

of a classical system whose phase space is the tangent bundle . tations of a compact group. Theories containing both

. g :
This can be identified with the space of solutions o : 8" X R ties, in contrast, are capable of continuous deformation. We

the classical equations of motion, which are conformally invar nsidexr the simplest example of this phenomenon in §10

i.e. invariant under the group Conf(s' x R) of diffeomorphisms
which preserve de? - dt? up to multiplication by a function of
Thus Conf(s' x R) acts on TLM. We shall see that it follows £
definition of a field theoxy that conf(S' X R) acts projectively:ur
One can think of a conformal field theoxy as a projective unita
representation of Conf(S' x R) equipped with some additional 8
Speaking very roughly, the additional structure expresses the £

is a representation of a disconnected ngroup” which has Conf(é

as its idemtity component.
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§2. pifft(s?) and the semigroup of annull characterized as follows. If X is obtained from a {possibly

&iscormected). surface X by sewing together some of the circles making

The group DiffT(s') of orientation-preserving diffeomorphisms o up 3X, and ¥ : X o ¥ is the identification map, then a function

the circle is an infinite dimensional Lie group which doss not possess £ : U - C defined in an open set U of ¥ is holomorphic Lf and ounly if

a complexification. In this section I shall describe a complex Lie the composite f£'7 : "' (U) » C is holomorphic. It is true, though by

semigroup # vhich can reasonably be regarded as a subsemigroup of the o means obvious, that this does define a complex structure (apd hence

non-existent complexification. The relation between pifft(s?) and # :a smooth'strucl;_ure too) on the interior of i

is exactly the same as that between the group T = (z ¢ C: |zl = 1} and Let A denote the set of isomorphism classes of Riemann surfaces A

the semigroup C’<<1 =(z ¢C : 0 < |z] <1}, or, beteer, between the ‘which are topologically annuli (i.e. diffeomorphic to

subgroup ESU, , of piff*(S') conmsisting of Moblus transformations and "€C: a ¢ |z| ¢ b}) and are equipped with parametrizations of their

the sub-semigroup boundary circles, one incoming and one outgoing. Such annuli form a

emigroup in which the composite A, « A, is formed by sewing the

o
PSLi(E) - (g ¢ PSL(T) : g(D) € D) utgoing end of A, to the incoming end of A,.

1If one forgets the parametrization of the ends then any annulus is

of the complexification PSL,(C) of PSU, ,. (Here D is the unit disc’ somorphic to A, = (z ¢ C : r { |z| ¢ 1} for a unique r ¢ (0,1)., The

{z e C: Jz| ¢ 1}, and 9 is its interior.) Another such pair consgis nly holomoxphic automorphisms of A, are rigid rotations, so we have

of U, and the semigroup of contraction operators (g ¢ GLn(E) : hgh <

The gsemigroup A is constructed by considering Riemann surfaces roposition (2.1). .ﬁ' is homeomorphic to

with boundaries. The suifaces we consider in this paper will always
compact smooth (i.e. ) manifolds X with boundary dX, with a smooth (0,1) x (Diff*r(s") x pifgT(s"))/T .
almost complex structure defined sverywhere in X, We shall

usually consider surfaces with parametrized boundaries, i.e. with a
given smooth identification of each boundarj circle § © X with the Thus # has the right size to be a complexi-.ficacion of DLiff¥(s'y.
standard circle §' = R/Z. If the parametrization of § agrees with ¢ On the other hand & is a complex manifold in view of

orientation induced by the complex structure of X we shall call the

circle outgoing, otherwise incoming. Surfaces with parametrized

roposition (2.2). Any element A of ‘99‘ is uniquely representable as an
boundaries can be sewn together by jdentifying incoming circles with ulug in £ bounded by the circles
outgoing omes. One can also sew together an incoming and an outgoing

circle of the same surface. The sewling-togethexr process is foxmall



442 Segal The Definition of Conformal Field Theory 443

2

zv> £,(2) =az+az’+ ... oposition (2.4). The tangent space to 6‘9‘ at A is the space of

ex tangent vector fields to A along dA, modulo those which extend

3

z vy £,.(2) = {z7' + bz 2 +bz"? 4+ R R otphically over A, 1.e.

where £ extends to a holomorphic embedding £, : D » €, and £, Ty, = (Vectm(s') @ Vectm(s’))/Vect(A).
extends to a holomorphic embedding of D, = (z e CU = : |z| 3 1)
Riemann sphere §2. (We always identify S' « R/Zwith T c T by

t 1 e?¥it)y

Rasark, As A shrinks to S, i.e. to the absent identity element of &,
space Tp approaches Vectw(s'), as one would expect 1if ﬂ is a

Proof: Given an ammulus A, let 3 be the closed surface got by sewl :axification of Diff(s?).
copies of D and D to its ends, Then 2‘; can be identified holo-
morphically with the standard $?, and the identification is uniqu 568 of (2.3). We must show that the map of tangent spaces induced by
the normaliztion prescribed in the proposition.. A -+ A is complex-linear. Let A, and-Az be annuli, and

The space Hol(D) of holomorphic functions on D with smooth

o A . Write A =8 U S,y and 34, = 8, U §,, so that

2
boundary values has a natural topology as a subsgpace of C®(s").
Proposition (2.2) identifies & with an open set in the complex wvei £ (ED,E,) € Vectm(so) & Veétm(s ;) Yepresents a tangent vector to
space E = £ @ Hol (D) & 5011(D) by Ar> (a,,a;‘fo,f:): here A, and (11‘,1’.2) represents a tangent vector at A,, then the
ition law takes these vectors to (§ 0,3' 2} vhere

Hol (D) = {£ : £(0) = 0 and £1(0) =~ 1)

Yo = By + ]S, §, =, + oS,
In fact #* is a bounded domain in E, because |2} < 1 and each

coefficient a;'ai or b:L in (2.2) is also uniformly bounded. (Th me ;- € Vect:(Ai) such that
area of the annulus, as a subset of C, is #{1 - I kfay|? - T Kk|by
o [S, - a8, =&, -,
Propogition (2.3). The composition dq— X \ﬂ- L] .ﬁ- is holomoxphi
follows from Laurent's theorem that any vector field on S, is the
To prove this we must consider the tangent spaces to A, B ence of holomorphic vector fields on A, and A,.) The

any anmulus can be embedded holomorphically in C we have g5 () v (8, 1,) 1s clearly complex-linear.
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There is an importamt holomorphic function q : :73- > X vhos is natural at this point to ask a mumber of questions to which

v : i
value at A is the modulus of the toxus A obtained by sewing the @ it know the answers.

of A together. (A torus with a preferred cycle is isomorphic to i) 1s T(#) & Shilov boundary of &7

for a unique M with 0 < |A| < 1: I shall call A the modulus.) Moxe 1) Does the fumction q extend continuously from A to T($)?

{i1) If so, what is the relation between q|Diff+(S') and the
if there is a holomorphic map F : A - €< such that F(£.(2)) = i6h number in the sense of Poincaré?
WF(£ (2)). 1 shall omit the proof that q : .ﬂ » ©X is holomorp recall that a Shilov boundary of A as a subset of E is

but the following result is almost obvious. ed 'as a minimal closed subset ¥ of the closure #°1 of & with
Proposition (2.5)." Ve have q(a) = q(B) if and only if A and B
conjugate in .ﬁ", i.e. related by the squivalence relation ~ gene'i'

by
A~B if A=~C oD and B= D o C for some G, D: ! “(lously to 54":1. If a Shilov boundary of HA exists then it is

When b is regarded as a bounded domain in the vectoxr spac £ ftained in L(H) belongs to a holomorphic curve in A got by
boundary is made up of several different pieces, One piece lies
hyperplane a, = 0. It is of complex codimension 1, and consists
vinfinitely long" amnuli. If it is adjoined to B we still have
open set of E. Another piece of the boundary comsists of the polil
such that the embedded discs £ (D) and £ (D) im $2 touch each rphism is from being conjugate to a rotation, 1.e.
i.e. those for which the "width” of the ammulus collapses to ze"if
some point. This piece is of real codimension 1. It contains .}ct\li'e.- The function q extends continuously from H to @, and
extremal part E($}) where fo(S') - fw(S'). This is a completio? ‘Efeomoxphism £ of 5' one has q(f) = pel® where a is the
piffT(s?), in the sense that it contains a dense open subset e
where f UIS‘ and fmls‘ are injective, and f:(-ﬂr) can be identifie.
pifft(s") by (£5,£,)) > £2' o £,. There are also two other p
the boundary comsisting of points where fulD or waDw fail to

embeddings.
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is "maximal parabolic™ in 09', and contains the "minimal parabolic®
&0 - (£ e® : £(0) = 0). In support of this terminology we notice’

that (cf. [BR])

L

pifet(s'y/T ,

A /8,

H/E

R

Diff"'(S')/PSU,H ,
and also that éo Eo is an open subset of 64'

. It is easy ta see that if £ ¢ 8 then q(£) = £'({), where { i
unique fixed point of £. Thus ql‘&ﬂ is the homomorphism £ +» £'(

whose kernel is the commutator subgroup of ﬁo.
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Wick-rotation, and representations of A

In ordinary quantum field theory there is a Hilbert space '§£ of
tés on which the group R? of tramnslations of Minkowski space-time

s unitarily. It is well-known that the positivity of energy can be
ssed by saying that the unitary action of R* extends to am action
semigroup

€} = (e :Im(§) ¢P ),

_re-' P ¢ BR* is the positive light-cone. The action of C:, is by
'action operators, and is holomorphic. The "boundary" R* is an
dense subset of the Shilov boundary of T;.

ow let us consider 2-dimensional Minkowskian space-time

R'x 8!, in which space is a circle. The group T of translations is

‘Ry/272, where (¢,7) ¢ T acts on (t,é) e I by
A(t.o)k—a- (t+Epk9, 0+L -7 .

positivity of energy is now expressed by saying that the unitary

s-a covering group of C><<' x CL(I, where (.'.><<1 = (q ¢ X |q| < 1}.

i ‘has a conformal theory one expects the group Conf(X) to act
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Conf(E) = (Diff(S]) X DLEE(SR)/2vZ , ‘[ 1). For example when G is the subgroup PSU, , & PSL,(R) of
;ff(s‘), and GE is the sub-semigroup of PSLZ(E) described at the

where Diff(s') is the simply counected covering group of Diff(s'), inning of §2, it is well-known (and obvious) that the irreducible
the group of diffeomorphisms ¢ : R > R such that (0 + 27) = p(8) : ‘tary representations of G which extend to GE are precisely the
The main idea of conformal field theory - in one interpretation - iE {s¢rete series representations, i.e. the representations of G on the

that the positivity of eneigy is expressed by the fact that the ac es of holomorphic forms on D, and also the trivial representatiom.

of Conf(ZL) on 3“. extends to a holomorphic comtraction representati
~ ~ r~ . .
(JQ‘ x.ﬂ )/2%xZ, where A is the simply connected covering group of -Returning to Diff"'(S') and J@—, the representations of pifeF(s")

semigroup \94 of annuli which was introduced in §2. In fact one wa h have a chance of extending to qﬂ' are the ones of positive energy

_the action to extend to a still larger semigroup (or rather categoiy. (627, ps1), i.e. those foxr which the subgroup T of rigid rotations
which allows circles to split into two: that is described in §4. s by characters (eiko) for which the values of k are bounded below

The holomorphic action of C} on a conventiomal state space is 2 are all projective representations. In the following discussion

course completely determined by its restriction to the cone 1P. A hall tacitly restrict our attention to representations for which

contraction representation of iP can be extended holomorphically to¢ ‘acti.on of C’é, c & is diagonalizable and extends to am actiom of

providing it satisfies the condition called "reflection-positivity piff¥(s'). I shall also mot distinguish between representations

and then restricted to give a unitary representation of R?. 1In the ich are "esseni:ially equivalent”" in the sense of [PS] Chaptexr 9.

two-dimensional case the sub-semigroup of TE vhich corresponds to

the upper half-plane L., the covering of E’<<1 . In the case of Gonf(L) Proposition (3.1). There is a;1-1 correspondence between positive

the corresponding semigroup is o#, embedded diagonally in mergy projective representations of piff*(s') and holomorphic

~ ~ "
(A xF y/2xZ. We are therefore interested in two questlons: jective representations of H . Unitary representations of piff*r(s")

(1) wvhen are unita representations of Diff(8') the boun > itrespond to representations of ﬁ' which are reflection-positive in
y P P

values of holomorphic contraction representatioms of tﬂ‘, and -sense that UZ - UK

(ii) when can contraction representations of & be continued

o d ~ .
analytically to holomorphic representations of (ﬂx.‘ﬂ ) /2222 Pioof: First suppose given a representation & v» U, of A on a
op'c;logical vector space E. Let Aq be the standard annulus with
Concerning the first question I should mention that the ameter q ¢ C)<<1, and let Uq' - UA . The union of the subspaces Uq.E

corresponding finite dimensional situation - vhere a Lie group G ii
essentially the Shilov boundary of an open semigroup GE contained
the complexification Gy - occurs frequently and has been much stud;

xtend to pifst.
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If A is an ammulus and ¢ is a diffeomorphism of §' I shall write gee that A +» Uy is holomorphic if the map

¢A (resp. Ap~') for the annulus obtained by changing the outgoing

(xesp. incoming) parametrization of A by p. Let us call an annulus ., > quq - U‘lL"l s
real-analytic if both its boundary parametrizations (in the sense of:

(2.2)) are real-analytic. If p is a real-analytic diffeomorphism Let fined on Vectm(s’) & Vectm(s‘), vanishes on Vect(Aq). But that is

U¢ denote the densely-defined opsratox U‘PAUA' in E, where A is a vious. (Holding q fixed in this calculation is permissible because

real-analytic ammulus. This does mot depend on 4, for if A' is anoth .constant defines a submanifold of & of real codimension one.)

choice then there is a standard annulus B = A.:l such that 4 = BoC and’ rially, to show that A+ T, is a homomorphism amounts to proving:

A' =~ BoG', and t two holomorphic maps A x S » End(E) coincide. But they

neide by definition at points of the form (goAq,Aqn[z"), and as they

UaUp' = U¢BU§, = U Ua! té ‘holomorphic that is enough.

‘The correspondence between umitarity and reflection-positivity

(We are suppressing a possible projective multiplier, which is ds no comment, except perhaps to point out that if A = «pAq\b" then

immaterial.) Then U p 1aps ¥ to itself, and defines a representation

1
Diff';n(s ), because

‘I have little to say about question (ii) above, when a non-
Ulﬁ? - Uw(m)U;AUwUA' - U‘/'Usa . omorphic representation of & can be continued to a holomoxphic
~ ~o
ésentation of the complexification dq'm = (.ﬂ-L x.ﬂ-R)/ZrZ. It is

Conversely, if E is a positive energy representation of Diff* (s tainly true in the reflection-positive case. For any representation

then there is an obvlious candidate for the operator Uq associated glves us a representation of the Lie algebra of Sy, which is the

Ay. But for any annulus A we can by (2.1) write A = qu¢" in an iplexification of the Lie algebra of Diff(S]) X Diff(Sp). But it is

essentially unique way, and then define Uy = UPUqUJ,‘ . We must show wn that any unitary positive energy representation of this Lie

that U, depends holomoxphically on A, and that it defines a repres ﬁra extends to a representation of the group, and then the

tion of ¥l . For the First, recall from (2.4) that the tangent spa asentation of Diff(si) X Diff(sl'{) gives rise to a holomorphic

at A is (Vectm(S‘) ® Vectm(s')) /Vect(A). Let & v> LE be the presentation of #m as in the proof above. It would be interesting,

derivative of p > Up. Writing the derivative of A v> U, as ver, to have a better treatment of this questiom.

- -1 . -1 -1
Uy U“, ((UW BII‘D)Uq Uq(U¢ BU‘!’)) U‘L
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As a space ‘@ o is the quotient of the contractible space of
: flird
lex structures on a Asmooth surface L, of type o by the group of

84, The category ‘@ and the definition of a field theory

The category % - diffeomorphisms of L, which are the identity on 3L,. On the other

The category € is defined as follows. There is a set of objec d-it 1s well known that the moduli space of closed surfaces of a

{Gglnye» Where G, is the disjoint union of a set of n parametrized. %ivén topological type is a finite dimensional complex varlety with

circles. A morphism G - Gn is a Riemann surface X with boundary e mild singularities. If a is a connected surface with k> 0
together with an orientation-preserving identification G, - Cp 2 X undary components the complex structurxe of ‘ga can be described by

(Here G, - C, means Gy I G, with the orientation of G, reversed.) logy with the description of & in 82, as follows. Let g be the

identify two surfaces if they are isomorphic by a map which respec s of the closed surface pgot by adding k caps to o - we shall call g
the parametrization of the boundary. Gomposition of morphisms is fiply "the genus of a" - and lat'm'g i be the moduli space of closed
defined by sewing surfaces together.' Faces of genus g with k marked points (%{) and prescribed tanmgent

The set \an of morphisms G ~» Gn_ is a topological space with o tors {£;) at the points {x3). The space'M,é k 1s a finite-

connected component ‘ga for each topoleglcal i:ype of surface, Thus ¥whe idifiensional complex manifold with no singularities, and there is a

o is an annulus fa is the semigroup #Hof §2. Two other cases are w tological fibre bundle over it whose fibre at X is £. The space ‘ga

x - A
mentioning. fibration over'mé'k whose fibre at (X, (x%;},(§;}) is the space of

(1) If o is a disc 'gu is Diff"'(S')/ESU‘ for all discs are thi uples of disjeintly embedded dises £5 : D » X such that £4€0) = x4

» 1’
same except for the parametrization of the boundary. This gives a. “£}(0) = E;. (This description needs adjustment when o is a disc:
\ - : .

description of the complex structure on Diff'(§')/PSU "ea is the space of embeddings £: D » S? such that £(0) = 0,

1.1 (eE. [BRD)
In terms of the semigroups of §2 we have ga ‘-;‘xﬂ/&. 0) = 1, and £"(0) —.0.

(11) If o is a disc with two holes then ﬁa has a Shilov bounda’
which consists of the space of ways in which a circle can split int Composition of morphisms is a holomorphic map ‘gkm xgm‘n "‘glm' It
two! enough to prove this when the composite surface has no closed

ponents, and in that case it follows as in §2 from

roposition (4.1). If o has no closed components the tangent space to

K\? at X is Vectm(ax)/Vect(X), the space of f:angent vectoxr fields to X

long X modulo those which extend holomorphically to X.

'Purists will object that the category‘g has no identity morphisms,

31T haea Clad e e Bamao 3
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Remark. The dual cotangent space is therefore the space of holomorp We shall. make use of a number of elementary operations which can

quadratic differentials on % which have distributional bouundary valué perfoxrmed on the morphisms of 4.

on dX. (a) The symmetric groups S, and S, act on ‘gnm by permuting the

ering of the boundary circles.

Proof of (4.1). The argument is the same as in §2, except that we! “(b) If X e‘@mn then the complex conjugate surface X belongs to

A iy -
to know that if X 1s obtained from a closed surface X by removing g and X+» X 15 an antiholomorphic map.

discs, then any Y e‘@a which is sufficlently close to X can be embd (e) By reversing the orientation of the incoming boundary circles

holomorphically in )'i That is true because X is a Stein manifold btain the "crossing" isomorphism ~€mn B 'go,m+n' which I shall

te Xw» |K].
Remark. We could put a finer topology on ‘@m - without changing the d) By sewing k incoming to k outgoing circles we obtain a
topology om each goz - so that emn l;ad just one commected component. morphic map ﬁmn 2 Uk, n-k-
each genus. For if @ is disconnected% can be stuck on to the boun

of goz for an appropriate commected &. Thus the space e now give the provisional definition of a conformal field

(pige*(s'y/psu 1 1)"’ of pairs of discs can be attached to the bounda ¥ ty. We should warn the reader, however, that it is unsatisfactory
, - .

of# by collapsing the divisor (Diff'(s')/T)*? consisting of infiri e it does not allow for projective multipliers.

long cylinders. The resulting conn_ected ‘guu;l would be a complex Vi

with bad singularities. We shall not‘pursue' this, however, Definition {(4.2). Let H be a topological vector space with a symmetric

ution H 5 H). A conformal field theory based onm H is a continuous

The definition: first version

We shall define a conformal field theory as a functor from ‘@ ’ .(i) U(c)~-HE...@H= w®

complex topologlcal vector spaces. We assume the vector spaces H:

and S

locally convex and complete, and equipped with a continuous hermi tric groups S, _ n-

form H X H » €. We shall not restrict ourselves to Hilbert spac iii) "Crossing”: for each X ¢ gmn the operator U(X) : H& L g 4

we want to allow indefinite imner products, We shall state the

ace class, and is defined by the element U(|X|) of H®" g n®"

definition in terms of tenmsor products. These should be interpré _. er with the bilinear form on H.

the sense explained in Appendix A. But if H is a Hilbert space v) "Sewing": the map fmn » 'gm-k,n-k of (d) above is compatible

tensor products can equally well be taken in the Hilbexrt space sense; the map
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Hom(u®: H®™) 5 Hom( (Hg(m-k),ug(n-k)) The partition function Zj of the theory is the function on the
ér half-plane defined by
gk 1£X ¢ and ¥ &
got by taking the trace over HY ., In particular, ¢ @, an
- 3 384D
the associated closed surface, then Zy(r) = trace U(Aq) L g dim(H, 1)
V. - 2717 ’ .
trace U(X) = UX) . eke q = e and Ay 1s the standard annulus {z :|q] < |z} < 1)
tibed in §2. ° Because the annuli Aq and Aa produce isomorphic
: ap T -axi/7T )
(v) "Reflection positivity": U is a *-functor in the sense thd torl if q = e /7, the partition function satisfies
U(X) = U(X)* for 21l morphisms X. Here the adjoint T(X)* refers to
-1
hermitian structure on H got by conbining the resl structure with the Zy(-r77) = Zy(r) (4.3)

complex bilinear form. )

’ t“cE. Proposition (6.11)).The partition function completely

. - seetratl 1

Notes. (i) In this definition we ought certainly to allow the spac 1.:'mi’nes H as & representation of Diff"(5y) X DLEET(SR), for the
s oot ol

have a mod 2 grading. Then the permutations of H®® chould be pex aracters of the representations of Diff (S') are all known, and are

with the usual sign conventions, and - most importantly - the tracé early independent.

property (iv) should be replaced by tha supertrace. We shall for tl}e
most part not bother to make this generalization explicit. :Another aspect of the structure is seen by choosing, omce for all,
(ii) If we omit to give the real structure onm H and the associa isc with two holes I, regarded as an element of ‘@21 - For amy
axiom (v) of reflection-positivity then we have a "non-unitary” £161: ty, I gives us a map H @ H » H vhich makes H into a mon-associative

theorxy.

".Ige"l;ra. This composition law is called the operator product

SeXp t-lsion. Together with the partition function the product in H
A conformal field theory is thus, among other things, a trace: dtormines the theory completely, for any Riemann surface can be
class representation of the semigroup & As we saw in g3, this gi'i"r 0 .gi'ned by sewing together discs, cylinders, and copies of I, by
us a pseudo-unitary action on H of .t:he Lie algebra of the counformal dble diffeomorphisms. In the case of the theory whose group of
group Conf(5' X R), i.e. of the Lie algebra of Diff'"(si) % Diff’*'(SI’{ niorphisms is the monster group, the algebra H contains Griess's
Under the action of the rigid motions the space H breaks up as a associative algebra as a subalgebra.
discrete sum of finite dimensional pieces: H -9 Ha,b' where Friedan has conjectured that a field theory U is completely

(a,b) ¢ R?, and a-b ¢ Z. termined by its restriction to closed surfaces, l.e. by the
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A field theory is called holomorphic if the operators U(X) dep
holomorphically on X. That is the case if and only if Diff"'(SL) ac
trivially on H, and also if and omly if the partition function is

holomorphic. A theory is called chiral if it is either holomorphic

antiholomorphic.

The conformal anomaly

The preceding definition is too restrictive, and we must intxo
slightly more general structures. In the usual terminology these i
theories which have-a "conformal anomaly”, Mathematically this amoupl

to passing to projective representations of the category ﬂ, i.e.

operator U(X) associated to a surface X is given ounly up to an

indeterminate scalar multiplier. Physically one should think that T

is assoclated not to the surface X alome, but to the surface toget

with a chosen metric compatible with its conformal structure.

dependence on the metric is slight: if the volume element w is

multiplied by e??, for some p : X » R, then U(X) is multiplied by

eics(“’), vhere ¢ is a constant depending on the theory (the “centr

charge") and S(p) is the Liouville actiom
S(p) = [y(ap A xdp +eR)

X
Here R is the curvature 2-form of the metric.

To digress briefly, one can define a gemeral notion of two

dimensional field theory as a representation of a category ﬁnetric

from circles and surfaces equipped with metrics. The metrics must:b
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wise twice differentiasble, and the boundary cirvcles must be
desics. Circles of different lengths are, of course, non-isomorphic

ts of‘g

‘metric: It may be that the intriguing work of

ddchikov [Z ] can be formulated in this language, but perhaps

ing more subtle is needed.

éturning to -mathematics, just as a projective representation of a
qup G is a genuine representation of an extension G of G by I:x, so a
give representation of a category ‘g is am ordinary represeutation
extension category ’E of 4 by €. To give such an extension

o:i'j' is the same as giving a rule which assigns a complex line Ly
moxphism X of 'g, and a map

ehi
gy g 8ly 2 Ix ey

teach .composable pair of morphisms. The maps pyy must be associative
bvious sense. The obpjects of ‘Zaze the same as the objects of
.morphism in‘z is a pair (X,»), where X 1is a moxphism in‘g and
In the next section we shall prove that there is esgsentially

) @; such extension of ‘g, got by assigning to X the determimant

ety of its S-operator, in the sense of Quillen [G ] (cf. also

di% B). More precisely, the most general extemsion is of ti\e form'
'tx)@ ® (W;’X)@q. If p = q = ¢ one says that the theoxy has

1':. harge ¢. (The determinant bundle will be discussed in detail in §6.)
.é .conditions of (4.2) make sense for a projective functor

ing X+-> Ly has the properties:

1) Iy = Ly if X is obtained from X by reversing the

trization of some boundary components;
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(11) Ly = Ty 5

{iii) there is a matural map Ly - 1§ when % is made from X by
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. v )
- Here a gsewing map X » X is one which identifies two disjoint
arts §, and 5, of X by an orientation-reversing diffeomorphism; and

sewing boundary circles together. he‘trace map Hyy - HB;{' is induced by the bilinear form

When X is an annulus there is a preferred element ey & Ly, e_md ;') ® H(S,) » c.
we can define the partition function as the trace of the operator In (4.4) it is important that we do not use Hilbert space tensor

U(eg). It has a modularity property analogous to (4.3), but we shal foducts, for then the Hermitian form H X H » € would not extend to

postpone discussion of that (and also the definition of ex) until §6

The idea of a “"projective” functor may seem unappe.alingly vague.

An improved version of the definition -additional structure which an oriented l-manifold S needs in oxder

‘define a vector space Hg rather tham just a projective space can be

Definition (4.2) is cumbersome and unnatural, and the following seribed as follows.

reformulation is cleaner. I shall give it in the projective version ‘We define a rigged l-manifold as an oriented l-manifold S together

We begin with a hermitian vector space H with a projective unitaty ik 'a specific choice L of a determinant lime bundle on the restricted

action of Diff($') in which the orientation-reversing diffeomoxphism Gssmannian Gr(f1°(S)) of the space of smooth fumctions on § (see

act amtilinearly. There is a unique way to associate to H a project endix B). For given S the bundle L is canonically defined up to

functor 5> Hg from compact oriented l-manifolds (and orientation- ﬁi’blhbrphism, but the isomorphism is arbitrary up to an element of X,

preserving diffeomorphlsms) to hermitian vector spaces (and C-linea jarametrization of § is more than enough to provide a canonical

operators given up to an arbitrary scalar multiplier) with the two ce of L.) A morphism from (sa'Lu) to (51 .L,) is a diffeomorphism

properties: $, + S, together with an isomorphism L, = f*L,.

(2) By = Hg if 5 is S with reversed orientation; ‘A surfaceX with >X = § defines a point Hol(X) in Gx(R°(S)). If S

®) R =H, @H, .
S8, ~ 5, 078

2 1gged by L then we define the determinant line of

oo Gbeel g of Lok Hal{X)
To obtain a vector in HS,L corresponding to L we must choose a

Definition (4.4). A conformal field theory based on H is a continu

t of LX'
natural traunsformation which assigns to each Riemamm surface X with

(unparametrized) boundary a ray Hy in Hyy satisfying To describe chiral theories we shall need an even more general

) By =y
(L) Hyy =y ® By

v
(iii) Hy = trace Hy if X » X is a sewing map.

nition than (4.4), in which a surface X defines a subspace Hy of

ich need not be one-dimensional. That is the subject of §5,
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Minkowski space, ghosts, and BRS cohomology ensional moduli space mn-i-n of all closed surfaces with min marked

oi;its, with values in the space of operators Hgl}.rzls - Hg;s of bldegree
Apart from the guestion of projective multipliers there are tw

other respects im which Definition (4.2) is not quite general enoug ' In particular, m elements of Hppg of bidegree (1,1) define a

for the needs of string theory. It is usual to study strings moving dimensional scalar-valued form on mm.

a product V X M, where V is Minkowski space of some dimension,

a compact Riemannian manifold. In that case the space of states of We shall say onl:( a 1little about BRS cohomology in this paper. To

string is a direct integral H = I}lp, where Hp is the states of mome ne it one ;:ensors the theory H with another theory thost which has

p, and p runs through the dual space V¥ of V. A surface X ¢ gmn x=26. The resulting theory H @& thos: has a genuine (non-

ojective) action of &. The space H @ thost has an operator

Qg + Qg which satisfies Q? = 0, and Q; and Qq raise degree by (1,0)

U(X)p :H ®...0H -H ®...8 Hq ' ~k0, 1) respectively. The cohomology (ker Q)/(im Q) is the BRS

T Py 9

= = m

homology. The theory thost will be described in §8, and we shall

where L py = L qy. Each operator v(x)p, q is of trace class, but U tixn to Q and the property (iv) in §9.

itself is not. )
More importamtly, strings are mot supposed to be parametrize

while the gpaces H we have been discussing describe parametrized

strings. One would expect to replace H by the subspace which

is invariant under Gonf(S8' X R). In fact the spaces H which arise

projective representations of Conf(5' X R) with a positive centra

charge c, end the invariant subspace would be 0. Instead of the

invariant part of H one has recourse to its BRS cohomology Hype

essential points about this are:
(i) it is defined only for a theory wi‘th ¢ = 26,

(ii) it has a bi-grading (called the "ghost number"),

(1ii) in good cases, at least, it has a positive definite metri

(iv) instead of an operator H@m - H@n

BRS BRS
one has a top-dimensional differential form w4, on the finite

for each surface X ¢
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§5. Modular functors (1ii) For the Riemann sphere $? we have dim E(S?) = 1,

Definition and main properxties es. (a) To say that E is holomorphic means that when (xb)b B is a

olomorphic family of surfaces parametrized by a complex manifold B the
In studying chiral field theories and also the representations ces E(Xy) fit together to form a holomorphic vector bundle on B. Im
loop groups one meets the concept of a modular functor. From one pol ticular, E defines a holomorphic vector bundle E, on the moduli
of view this is a generalization of ti'le idea of a central extension goz of surfaces of (labelled) topological type o, at least if «
Diff¥(5'). On the other hand it can also be regarded as a coherent o closed components. (Recall that ‘goz was defined in §4. We
family of projective representations of the braid groups and mappin Tude closed surfaces to avoid the singularities caused by their
class groups. s ble automorphisms.)

(b) The -isomoxphism of (i) above is supposed to be compatible with
We start with a finite set $ of labels, Let 8@ be the category -aps interchanging the summands on each side. As in 84 we should
whose objects are Riemann surfaces with each boundary circle tainly allow modular functors to be graded mod 2, and should use the
parametrized and squipped with a label from ¢. A morphism in 34,15 d tengor product in (i). The determinant line, for example, is a
holomorphic sewing map X -» i, i.e. one which sews together pairs of "2 -graded modular functor for which E(S?) is in degree 1.
edges in accordance with the parametrization; we allow a pair of edge

to be identified only if they have the same label. A morphism is :For any modulax functor E we have a map E(X) @ E(Y) » E(X.Y) when

allowed to permute the boundary cireles, but it must preserve their d Y are composable moxrphisms in"@ with thedr boundaries compatibly
parametrization. siled. So E defines an extension $F of the category ¢. a object

E is a collection of circles each with a label from ¢, and a

Definition (5.1). A modular functor is a holomorphic functor E frd

hism is a pair (X,¢), where X is an morphism in 'g and ¢ ¢ E(X).
to finite dimemsional complex vector spaces with the following :

properties.

friition (5.2). A weakly conformal field theory is a repreéent:ation
(i) BE(X 1 Y) = E(X) @ E(Y). E for some modular functor E, satisfying conditlons as in (4.4).

(ii) 1£ X " is obtained from X by cutting it along a simple clos

curve and giving the label p to the two new edges then the natura Thus such a theory assigns a vector space Hg to each

D = %
(Xw) + EX)

ped

dimensional manifold and a vector space Ey to each surface, and

e .1s a natural map Ey + Hyy for each X.

is an isomorphism.
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One may as well assume that the labelling set $ of a modulax :Thg sense in which a modular functor is a coherent family of

Functor contains no superflucus elements, i.e. no labels p such that fijsctive representations of discrete groups is explained by
E(X) = O whenever X has an edge labelled by ¢. We can then make the
following elementary observations. ;l.tion 5.4). For any modular functor there is a canonical flat
ection in the projective bundle of the bundle E, on ‘6“, for every

Proposition (5.3) g_losed labelled surface «. These commections are compatible with the

(1) There is a distinguished label 1 ¢ & such that dim E(D) = ~together of surfaces.

when D is a disk with 3D labelled 1, and E(D) = 0 if 3D has any othe f the modular functor has central charge O (see below) then there
label. ¢anonical flat comnection in the bundle E, itself.
(ii) I1f AW’ is a annulus with ends labelled p,¢ then dim E(AW
if p = ¢ and E(Ay) = 0 otherwise. In particular, E defines a centE 1 other words, if X and X' are surfaces of type « there is an
extension # P of by € for each label op. rphism P(E(X)) » B(E(X")) fox each homotopy class of paths from X
(i1i) There is an involution pvr p of & such that if B is an am n ‘fva. _Thus for each o a modular functor gives a
with both ends outgoing then dim E(B Wl') =1 4if § = p and E(B smﬁ) -0 gjgétive representation rl(‘ga) < BGL (C). Poxr example if a is a
otherwise. ’ with k hgles then «,(ﬁa) - ZE x GB‘:k, where CBry is the coloured
(iv) If % is obtained from X by reversing the parametrization o r'ii'id.igroup on k strands. If o is a surface of genus g with. one hole
incoming boundary circle and changing its label from ¢ to p then E(:X)'_ hen ‘K 6 o) is the mapping class group of a.
E(X) 8 E(BW’)'
iilinde's algebra
Proof: We first prove (ii) by observing that the ¢ X ¢ matrix
dim E(A¢¢) is idempotent with positive integer emtries. The matrix An“attractive way of looking at modular functors has been
dim E(B@P) is then symmetric and invertible, so we obtain (iii). steloped by Verlinde [V}, following the "fusion-rule” approach of
Assertion (iv) follows immediately, and finally we get (i) by ::i.n-Polyakov-Zamolodchikov {#%Z) . Let L be a disc with two holes,

considering the decomposition §% = D U D. led

From now on we shall assume modular functors are normalized so

that E(D) = C when 3D is outgoing and labelled 1.
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Let = dim E(X). Then the free abelian group Z[®] is clearly a .
et Ty m E(X) & n jrreducible representation g of €. The involution y w»p takes a
commutative ring uuder the multiplication .

spresentation of G to its dual, and 1 ¢ ¢ is the trivial

:épresencation of G. let X be a surface with k boundary components,
(va) "é Z nm ‘/’ N
¥

The element 1 ¢ & is the identity element of the ring. We shall

i11 outgoing, labelled by p,,..., ¢ € ®. Then the group of holomorphic

éps Hol(X;6) acts on E, @... 0EF
e 1
ntral extenslon of (LG)k is canonically split over Hol(X;G). We

via restriction to dX, for the

say more about this ring later on. Fox the moment let us motice that:

ring structure of Z[®] is a very compact way of encoding the dimensio

define E(X) as the part of Ep ® ... @ E¢ fixed under Hol(X;G). If

1

of E(X) for all 1 abelled surfaces X. Thus if Mkp is the operator of me of the boundary circles are incoming we replace the corresponding

multiplication by p on Z[p] then the dimension of E(X) when X is a ctox E, by €*Eg, where t : S' » §' reverses the parametrization.

torus with an incoming snd an outgoing hole labelled ¢,¢ is .en X+ E(X) is a modular functor. This will be proved in Sl1.

The
int of the definition is that a surface X with p incoming and q

- itgoing circles labelled
Pov trace(MMp) going s labelled ¢ ,...,pp and ¥,,.

.- ,nlzq, together with an
jement ¢ of E(X) - i.e. a morphism (X,¢) in the extended category £E

and if Xg is a closed surface of genus g then efines a Frace—CIass operatoxr

dim E(Xg) = trace(PE')
where P is the matrix (pw)' This- 1s because for each p there is a natural duality pairing
Loop groups ’ ‘B, @ t¥E; > T .

The natural examples of modular functors arise from

representations of loop groups in the following way. I shall suppo The concept of a modular functor is designed, among other things,

for simplicity that G is the complexification of a simply connecte xpress the modularity properties of the characters of .

compact group. Let {Ejl,qa be the finite set of all irreducible esentations of loop groups.

A representation EW decomposes under

‘action of the rigid rotations of §' as a sum E, = @ E
k30 v,k

projective positive enexrgy represem:atmns of a certain level of thé
loop group LG. The indexing set ® can be identified with a set of

irreducible reprasentations of G, for the zero-energy subspace of
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finite dimensional pieces, where the rotation through the angle a act: :f:going end. The character depends only on ¢ ¢ B(X) and the

9,

as ¥ on E, k- Bach plece By i3 @ representation of the subgroup lomorphic G-bundle on X got by joining the ends of Pg. We shall
) ) . . ] -
of constant loops in LG. (Thus B, ; = ¢.) The partition function an xplain this in detail in 8§11

the character of E'P are defined as the formal serles

xw(q) -z qkdim(E%k)
a The most basic modular fuuctor is the determinant line, which is
an N .
e subject of §6. We shall see (sae (5.17)) that it and {ts powers
Xp(d:8) = T q“trace(g|E, 1) J . (see (5.17)) P
s -the only modular functors with only ome label. A more typical
respectively. In fact these saries comverge when ! ql < 1, and Xp(q ; eXdmple which can be described very explicitly is the following one,
best regarded as a fumetion of an annulus with modulus q. More ch corresponds to the level one representations of the loop group of
el (We shall meet other simple examples in §7.)
precisely, ;
Let & be the set of characters of Z/m. To a surface X with

i'ldary we assoclate a Helsenberg group Hy which is an extension of
XW(q) - trace(Uy , : B, > EV’) ) : . X
X;Z/n) by €* with the commutator given by the intersection pairing.
. . X .
vhere A is the standard annulus Ag, and ¢ is the standard element of “centre of Hy is the image of Hyy = C" @ H (3XiZ/n). A lsbelling

the line E(Aq), where the ends of Aq are labelled with ¢. Then Xpld “(Pys 0+ .p,) of the boundary components defines a character x ” of

. ‘which is the identi €. There i ique irreducible-
depends only on the image, say ¢g .. of € in E(X), vwhere X is the X - s entity on ere is a unique irreducible

torus got by sewing together the ends of Aq' We know from (5.1)(i

that the elements eq 0 form a basis for E(X). On the other hand b
]

(5.4) the modular group SLZ(Z) acts projectively on E(X). This me .

Tesentation E(X) of Hy in which Hyy acts by Xpe It is
0 unless 3p = 0 in H3(X,3X;0%), i.e. unless N p; = 1, in which case
has dimension n®, where g is the genus of X. (It can be identified
that the partition function X, is transformed by a modular the space of #-functions of level n on the Jacobian of X.)
transformation into a linear combination of characters of the same The ring Z[¢] in this case is simply the group rimg of &.
Level. ;" The preceding description is imprecise in two ways. First, Hy

The character X, ?(q,g) should similarly be reg_arded as a functi
of a pair (A,P), where A is an annulus an d P is a holomorphic prin airing. Secondly, even when Hy is given, the representation E(X) is

G-bundle on A with a given trivialization of P|3A. Thus X,P(Q-s) = uniquely defined as a projective space.

q

incoming circle and g times the obvious trivialization over the

i X G with the obvious trivialization over
x¢(Aq,Pg), where Pg is A
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To clarify the definition of Hy we first introduce the fines a central extension of the real-analytic diffeomorphism group
extension H% of H, X;2) by C¢ defined by the cocycle

(F-nn)\‘? ez-:ri<5,-q>/zn , (5;.5)

Iyp = Lypn 0 1n

and then we define Hy as the quotient of H% by the central subgroup

% Lyps © Ljn © Ly 0 Iy
H1(X;riZ).

To deal with the second polnt we consider the extemsion H§ of 5 Lw oL
H, (X;R) by ©X defined by the same formula (5.5). The group Hg has &

standard Heisenberg representation on the space Fy of holomorphic “we can choose A so tha
t pA is also real-analytic.
" - e ' alytic. On the other
functions on H, (X:R), e.‘nd we define E(X) as the part of Iy ed by tid it 1z known that the classification of extensions of Diff*(s") is
N

H,(X;nd). (Here R is X with caps added to its boundary circles, and :same as that for the real-amalytic diffeomorphisms.
A

the complex structure of Hl(K;R) comes from that of X.) Comversely, 1f we are given an extension pt> LP of Diff*(s’) we

@gfine an extension of & by setting LA = £ for the standard amnulus A

Extensions of & :

q
"’Aq v = Lp@ L v It is easy to see that Lp ®L 7 depends only on the

Modular functors give us extensions of uﬂ‘by X, and we shall B

explain how these are classified. 2(A): see (6.7). We have therefore defined a correspondence

. éen extensions of Diff"'(s‘) and extensions ofof.
Proposition (5.6). Holomorphic extensions of «#by X correspond

precigely to extensions of pifft(s") by ct.

‘Contral extensions of Diff+(s‘) were classified in [$2]. The

iversal central extension has kernel R @ Z, so extensions by cx

Proof: We use the argument of (3.1). If A is an annulus we writ 3 ;spond to homomorphisms R @ Z - &, i.e. to elements of T X 5
. . T

- X % v
(resp. Ap™') for the same anuulus with its outgoing (resp. incomirtg) fision can be completely described by its Lie algebra cocycle, in

edge reparametrized by 2 diffeomorphism ¢ of s'. Suppose that w

i¢ifollowing sense. The Lie algebra Vect(S') has the traditional

jven a lime L, for each amnulus A. Then we define L, for & - oind
& A P s'{L;, = e'™Yd/dg). When one has a projective representation of

*
- - A
real-analytic diffeomorphism ¢ by Lw L oA @ Ly, where is a (5') one can choose the representatives of the L_ so that

real-analytic amnulus. The line LW does not depend on A, and it
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[L_ L] = -2k, + = en(nZ-1) . (5%

tension Vx is canonically split, and ’\7x acts scalarly on E(X). Thus
12 J

‘X we have a differentiation operator DE on sections of E, for each

\ ect(X), i.e. Dy is defined to an additive scalar for each
Then the classification is given by sx/Vect(X) I3 up

gent vector £ to ‘ga at X. This is a commection in the bundle of

Proposition (5.8). A central extemsion of pifft(s') by X is describ fojective spaces of E,, and it is flac because it comes from a Lie

by (e,h) ¢ € X (€/2), whore the weentral charge” ¢ is defined by gebra action of Vyy. The nature of the definition of the commection

(5.7), and b is any eigenvalus o £ L (Thus h is detected by the ikés it automatically. compatible with sewlng surfaces together,
. ’ o

restriction of the extension to the subgroup PSLZR.)

dular functors from a topological viewpoint

A modular functor gives us an extension of & for each label.

shall see in (6.9)I that the extensions corresponding to the differer Immediately after the first versilom of this work was written the

labels all have the 'same- central charge ¢, which will be called thi dy of modular functors was transformed by Witten’'s realization (W]

central charge of the modular fumctor. The extension correspondim hat the vector spaces in question are in fact the state spaces of 2+l

the label 1 necessarily' has h = 0. The extension defined by the ensional "topological™ field theories. To explain this it is best

look dular £
determinant line has (c,h) = (~2,0). ook at modular functors in a slightly different way.

‘The main point is that for any meodular functor E we know from

Th £ of (5.6 orem (5.4) that the space E(X) is almost independent of the complex
e _proo (5.4)

ucture of X. For if X is a smooth surface the space f (X) of all

a : lex structures on X (not identifying struct ich
A modular functor gives us am ext:ension.ﬂ;o of #, and hence ah n X ( ying ctures which are

- eomorphic) 1s contractible.
extension VSD of Vectm(s1), for each label y. Consider the bundle ” rphic)

The modular functor gives us a vector

H d : . .
the moduli space \@a' There is an action of & on ‘ga for each bounda le on ; (X)}: let Ej(X) denote its fibre at J. By (5.4) the

~ )
circle, and it is covered by an action of the appropriate ﬂw, and” jective space of Ey(X) is independent of J, But we can do better,

of ¥ _, on Ey. Putting these actions together gives us an action & re 'is a line bundle on .9? (X) whose fibre Det;(X) at J is the
Wl . .

- sfminant line of the Riemann suxrface (X,J).
of a central extension Vyy of Vectgp(3X). At a point X ¢ \gu the t (X,J)

1f the functor E has

N rdl char the bundl ib
gpace to “@ x s Vectm(aX)/Vect(X), and so an extension Vx of Veet(X ge ¢ the bundle with fibres

acts on the fibre E(X). But the Lie algebra Vect(X) has no £initi

dimensional projective representations (see|Appendix *), so the

E,(X) = E;(X) § Dot (x)®#%) (5.9
ﬁ\k Furewsad ad ?r,sfsmp’(

TBecause DeA = D when A belongs to the subsemigroup g ot A (see
the extension is ‘split when restricted te 2 , and hence when
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has a flat conmnection, i.e. By(X) is independent of J. To define nsiders the space 3}{ of 2-framings of X, i.e. trivializations of the

pet®¥®)  however, we must make a choice (unless ic is an integer). i of two coples of the tangent bundle of X. We have = (Ty) = Z, but

This can be done universally for all c e C by choosing a universal ié natural map 1,(5"1) > x‘(g'x) is multiplication by 12. The

L%

covering space @X of the principal C*-bundle W‘g{ of the line bundle

~

1)
Det on ?(X). The space sz then has an action of C, and Det@(* ) c
~

framings - therefore lead to an extension of the mapping-class group by
Whose -class is 12 times that of the extension considered here. (In

S v
be defined as KJX x G where € acts on C by (\,§) 2 eTich: drticular, Atiyah's extension is trivial when X is a torus, whereas

irs is the extension of SL, (2) induced by the universal covering group

Definition (5.10)., A xigged surface is a smooth surface X together’

f'SLz(R), and is isomoxrphic to the braid group on three strings.) In

with a choice of a unlversal covering space of pX' ny case, we cam now reformulate (5.4) as follows.

Of course any two riggings of the same gurface are isomorphic,bu toposition (5.11). A modular functor defines a fumctor on the
the group of automorphisms of a rigged surface (X, 'g’x) is a central’ egory of rig.ged smooth surfaces and isotopy classes of rigged
extension by Z of the.group of diffeomorphisms of X. In fact for @ diffeo@orphismS,
surface of genus >1 it is the universal central extension of the
diffeomorphism group. . The Functor on the category of rigged smooth surfaces so obtained
I have not been able to think of a less sophisticated definiti %111 be called a reduced modular functor. From what we have said so

of a rigged surface, although there are many possible varianmts. Th “:it is defined for surfaces with parametrized boundaries (ox,

tter, with rigged boundaries in the sense explained after Definition

4)) but it 1s clear that we could equally well regard it as a

one can take %(H' (}Q;R)), which is obtained by replacing the detexminai actor on the category of closed rigged smooth surfaces equipped with

A : .
1line on ix by the determinant line on the Siegel domain y(ui(x;ﬁ. ?.nite number of labelled marked points with a preferred tangent

A ; : . .
complex structures on the gsymplectic vector space H'(X;R). (Here litéetion at each., 1If the tangent directions are rotated there is a

X with discs attached to its boundary circles.) There is an obvioud t connection in the resulting vector bundle over the torus of

ent directions, and the holonomy of a rotation of 2% about a point
(X R) lled ¢ is ez'ih

@( by the Grassmannian of oriented Lagranglan subspaces of H'(X:R) L. v-

(Lot us notice that if Y is a 3- manifold with Y = X the image o The central charge of a reduced modular fumctor is defined only

in H'(X) is a Lagranglen subspace.) In [AZ] Atiyah, following W dilo 1. (It is well-defined modulo 1 because HX(I;C) = C< when I' is

mapping-class group of a surface of large genus.) The oxiginal

lar functor can be recovered from the reduced ome up to temsoring

£l an arbitrary integral power of the determivant line.
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When two rigged surfaces are sewn together the result is riggse ‘corollary follows from the theorem because Ny is the (x,y) matrix

and a reduced modulax functor inherits the composition properties of gment of Mq, and the (8,8) entry of the diagonal matrix SM ps"- is

pefinition (5.1). This follows from the simple behaviour of the 8¢y~ That is proved by equating the (0,1) entries of the matrices

determinant line, which we shall treat in §6. (The variant definit - (snps“‘)s, for (MV’)X‘ - GV’X'

of rigging mentioned above are less well adapted to sewing.)

1t seems appropriate at this point to mention nyerlinde's We shall not give a proof of (5.12), but shall explain how it

conjecture”, which gives a remarkable description of the algebra 2 :iows from the 2+l dimensional description of modular functors to

associated to a modular fumctor E, which we can assume to be reducédd ich we now turm.

(The statement and the idea of the proof are due to Verlinde [V ];

pological field theories

complete proof was first given by Moore and Seiberg [MS].) Let X

toxus, and let o, be simple closed curves on X representing a basi

.A topological field theory in d+1 dimensions can be defined, by

can identify E(X) with C[®] by cutting X along o and using 5. 1)¢( l6gy with (4.4), as & system comprising

The mepping-class group of X is SLz(Z). It acts projectively on E(X (1) a functor X+» H(X) from closed oriented d-dimensional smooth

and we transfer the action to C[d’l . lLet § : Ci[¢] » C[®] be a clds to finlte dimensional complex vector spaces,

representative of (_g t), and let Mp denote as above the operati (i1) a non-singular pairing H(X) @ H(X) » C for each X, where X

multiplication by ¢ in the Verlinde algebra. Then we have jtes X with reversed orientation, and

i1i) a vector Yy ¢ H(>Y) for each smooth oriented (d+1) -dimensional

Theorem (5.12). The matrix of snps" is diagonal with respect t fold Y with boundary.

natuxal basis of C{®]. These data are required to obey the following two axioms.
The theorem implies chat the structure of the Verlinde algebl

completely determined by the matrix S. In fact

Corollary (5.13). The structural constants T, of 2[®] are glvé
v
ap H(3Y) - H(3Y) induced by the pairing H(X,) ® H(X,) » C.
. Witten realized that the modular fi i
- 1 unctors coming from -
n__, % (s )XGSOWSW/SVI . g representa

.
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and subsequently Kontsevich {K ] and others have given arguments - a

tientation-reversing diffeomorphism £ : X, » X, allows one to sew
1ittle sketchy - to show that the two concepts are actually equivalen y

¥
. ogether X, and X, to form a 3-manifold Y such that - Xn is obtained
Of coutse one must first widen the definition of a topological theory

¥y sewing from Xn' To see that there is a natural map H(3Y) = H(a%),
1ittle so that it is defined on the category of rigged surfaces and .
3-manifolds. An oriented 3-manifold Y whose boundary Y is rigged ha

itself a set of riggings which form a principal homogeneous set under
HERY) = H(X 590, %02) @ BUE i9,,19,,) 8 HE 50, ,.00,)

Po1:Po27¥12

the group Z whicﬁ is the centre of the central extension of Diff(a3Y)
1 do mot know an altogether straightforward way to define a rigging <

a 3-manifold. One approach is to intxoduce the contractible space (/

ere pyy s a multi-label for X; M X;. We project this sum to the sum

of metrics on ¥.  Each metric has an "y-invariant” (see [A’$]) which g e
£ the terms where p,, = p,,. Then the last two factors in the tensor

a non-zero element of the determinant line of Y. (The invariant is .
. roduct are in duality under £, so the sum maps to

v
@ H(X19gq1P02) = H(X,)

Po1 ™ Poz2

essentially the phase of the determinant of .the signature operator.)'

Thus we have a map

b My s Py -

~ “The -axiom we require is that H(3Y) - H(a¥) takes Yy to W
A riggilng of ¥ is a lift of this map to the covering space anY wh

defines the rigging of Y.
] When a reduced modular functor E is given it is obvious that there
7o relate modular functors to 2+l dimensional theories it is -
t most one way to define the vectors yy corresponding to
helpful to introduce the intermediate idea of a relative 2+1 "
I inifolds Y. One begins with the standard 3-disc D and chooses yp in
dimensional theory. Like a modular functor this has a set ¢ of la .
1ine E(S%). This can be done arbitrarily, because any modular
and assigns a vector space H(X) to each rigged oriented surface wit

ctor has an automorphism which multiplies by &) on E(X). Any
labelled boundary circles. It has the same seving-together proper y

] 5 er 3-manifold Y can be obtained by sewing coples of D together, and
as a modular functor, As for a field theory there is a vector

vector Yy is determined by the sewing axiom. Kontsevich {K ] has
Vg € H(3Y) for each rigged 3-manifold with boundary, but it is requ

, én a simple argument to show that the vector obtained is independent
to satisfy a stronger sewing property than (b) above, for ome mus

the chosen decomposition of ¥. I feel, however, that the matter is
allow dY to be decomposed X, U X, Uz, where the X; are surfaces ‘Wi ;

¥i11 far from well-understood.
boundary which intersect along various boundary circles. An : o
I shall conclude this section with the proof of Verlinde's

Jecture (5.12) for a 2+1 dimensional field theory. Let X be a disc
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' (5.13)

. SW=ZUTUAUAUA TNE, 85,8
with two holes, and let Y = T X [0,1]. Then ”

<"

where A is an annulus. We have

ere ¢ e H(S' X 8") 1s formed in the same way as ¢_, but with the

13 v’

es of the torus interchanged. In terms of the modular transformation

BGY) = @ H(Z ) ® BT )™ @ H(AL) 8 H(AL) ® H(Ay)

H(S' x8') o» H(S' x S') we know that ¢ is a multiple of Se¢ _, and
?:X!\l’ P 14
~the equality of (5.14) and (5.15) is exactly Verlinde's asserxtion
.12).
in what I hope is obvious notatiom. Let )

ord's theorem
Yy = > t\OX'l'@ew@ GXQE,‘(,» e
e X ¥

We can now easily prove the crucial theorem of Mumford which

rmi 11 ~di i 1 dul. funet; . I tl
where ¢ oxv is an endomorphism of H():m) and € is the canonical nies all one-dimensional modular functors (I am greatly

1 t of A When two copies of the cylinder Y. are sewn end-to- E‘i ebted to Deligne for showing me how to correct an earlier versiom of
element o . . :

(24

we have Y U Y = Y, and hence ¢§ = ¢y in the algebra H(3Y). But e following proof.)

e; ~ €, ete., S0 £,y is the identity map. Joining the ends of Y

v
together to get Y= I X S' we have

oPosition (5.16). If a modular functor E satisfies dim E(X) = 1 for
i11"X then it is determined by its restriction to <

Y=5Sn €. ® e, @ ¢ . (5 ;
W2y @ 8¢y : .

rollary (5.17). The only such modular functors are integral powers

v
on the other hand we can form Y also from A X §', where A is the digc e determinant line.

The same argument will prove

position (5.18). The only central extensions of the category ‘6 by

fe those given by X v Detieép ® Detxgl for p,q, ¢ C such that p-q ¢ Z.

From this point of view 3(A x §') is the union of eight annuli, ard agple. Let E (X) denote the determinant line of the 3-operator

. (2m-1)(g-1)@m . ¥
has to be of the form g on differentials of order m. Thus Em(X) E A ﬂhol(x)
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if m,g > 1 (cf. 86). Calculating the Lie algebra cocycles (see 3
i Eg £ Eg-H
(8.14)) shows that
2 \ " m:E ®E -2E ,
E (@) & B, (@0 6D (5.19) BB &'
m

_vhere 1 is defined by sewing together the boundary circles of Xé’),

and m by sewing together Xé') and Xé‘). To prove the theorem we must
1 2

-:'show that one can choose isomorphisms e

all surfaces X.
g :Co» Eg which are compatible

with the maps i and m. That is possible because the diagrams
Proof of (5.16). ZLet E, and E, be two functors with the same

restriction to & Then E = E'f @E, is a modular functor which is

. Egl ® Eg > Bg +g ES ® Eg > E +
trivial on & The argument of (5.3) shows that for any « there is a. 2 1752 1 2 B178y
commection in E, which is flat - uwot just projectively flat - and 'l 4 and i I
compatible with sewing. This means that? Ey is‘. determined by a E L8 SE 2 "

‘ representation of 1'1(‘6&). But it is a classical re_sul}: that ™, ({a) g1+ &2 gl+g2+l B 8 Eg +1 gl-!:g2+l
generated by "Dehn twists® along varlous curves y in the surface o ommute .

our language, if X is a point of ’ga one can write X = Y U A, vhere A

an annulus coutaining the curve 5. Holding Y fixed we have a

. Proofs of (5.17) and (5.18). We have seen in (5.7) that a holomorphic
* map tﬂ‘e“ga, and the Dehn twist is the image of 11@?') = Z, But Elﬁ‘i

trivial by hypothesis, so the action of "1(‘601) is trivial, and al

; 'bdular functor with one label. 1In view of (5.16) it is therefore
fibres of Eaz can be canonically identified. This means that X+> E(X i
enough to show that ¢ must be an even integer. That is true because

is a Functor on the category of smooth surfaces and diffeomorphism - th .
the (¢/1) power of Db — whesh s defined fe ngged surfrces —
and also that the group of diffeomorphisms of X acts trivially on E -

- : 085 no¥l descend Te |Al1\—|§ge¢( surfoees  unless €/ 5 aa --mfeuer.
The isomorphisms E(X) ® E(Y¥) » E(X 4L Y) and E(X) > E(X) are still, 5 . .

13 Jne weasem is fhud be Rest Chem dess of  Ded qeneedes

" (-gc( 3 Z) * Z '\’L‘“\'\ « i a btu"Fa,('-! o( ptlrj(’ g—(r\u_s
Jne l’\al\’ . \ t‘L‘J r\o"' k)‘\.&)‘u‘ :-F !i\fl.r( y a S.‘m\,pgg,- oion ,

course, natural,

Let us write Eg foxr E(Xg) when Xs is an arbitrary closed surfa
of genus g. If Xék) is got by removing k discs from Xg then E(xék)~
can also be identified canonically with Eg'. The complete data pro
by the functor are then described by the sequence of lines Eg toget!

with the maps
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Unitarity ... The determinant line

All the examples known to me of modular functors are unitaty iu

the following sense. inition and basic properties

Definition (5.20). A modular functor E is unitary if there is a The determinant line Dety of a Riemann surface X with parametrized

positive non-degenerate transformation qpﬁdary‘ is the dual of the top exterior power of the space of

omorphic differentials on the closed surface X obtained by adding

EX) @ E(X) - |Detyg] © s to the boundary circles of X, i.e.

for each surface X with labelled boundary, such that, in the notation Dety = AB gt\ml(ﬁ)* . (6.1)

of (5.1), the diagram

his definition, however, does mot lead one to expect the canonical

® E(X) @ EX) > [Dety] © torphism
£y 1
EX) @ B(D > |pety| ©

Dety ® DetY 2 Dety,y (6.2)

commutes. ich exists when surfaces are sewn together.

An alternative definition of Dety is as the determinant line of

Thus a unitary modular functor provides unitary projective S-operator of X in the sense of Quillen [&]. To define this,

representations of the braid groups, etc. More importantly, the 111 that on any Riemanu surface there is a 3-operator

definition is designed to give us

3 ' - 2% ()
Proposition (5.21). A pair of weakly conformal holomorphic field

theories H and H' corresponding to the same unitary modular functo fping smooth functions to (0,1)-forms. 1f X has a parametrized

with index set & gives rise to a conformal field theory based on dary then ‘gx has a natural boundary condition which makes it a

olm operator: ome restricts it to the subspace 2°(X,3X) of

.

ions which on each incoming boundary circle are of the form

H ' and tral extension |Det| © of 4 .
the space W%’ HP ® Hj, an the cen |Det|

phisticated readers should notice that to define Dety we do not need
oundary of X to be parametrized, but only to be rigged, as was
Tained after Defn. (4.4).
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ind

£ a,e!™, and on each outgoing circle of the form I bneinO_ Any roposition (6.3). If X has no closed components then Dety is
n)0 ’ n<0

Fredholm operator P : E - F between topological vector spaces has & anonically isomorphic to the determinant line of the operator

determinant line Detyp, which can be defined in various ways. A g ¢ Hol(X) - ﬂi(bX) given by restriction to 3X folllowed by
convenilent definition for our purposes is given in Appendix B. For & rojection on to ﬂf_. !

single operator P we have

rollary (6.4). The lines Dsty form a holomorphic bundle om each

Detp = Det (kexr P)* ® Det (coker P) , oduli space ‘é& of surfaces with parametrized boundaries.

where on the right Det denotes the top exterior power. For the We shall return to the case of closed surfaces below: sse the

operator Jy this reduces to (6.1), but the important property of th mark after Proposition (6.5).
definition is that the lines Detp fit together to form a holomorphi
line bundle on the space of Fredholm operators E - F, More ' oof of (6.3). We consider the diagram

generally, if E and F are holomorphic bundles of topological vectox

4 vl

0 + Hol(X) - )

spaces over some base space, and P : E < F is holomorphic and QOJ‘(X) s> 0

Fredholm (c¢f. Appendix B), then Detl,' is a holomorphic line bundle o i LS 1 3gpx i id

0
the base space. 0 - ﬂ+(3x) - QOI(X) @ﬂ_?_(b}() > nol(x) 5 0.

It should be remembered that the determinant line of a Fredholi

operator is a vector space with a mod 2 grading. The degree is thé he rows are exact this defines an isomorphism

index of the operator. For a surface of genus g with m incoming an

outgolng circles the degree of the determinamt line ism + 1 - g. Dety = Det'a—epr % Det_ @ Det

X id = Detm_

X,
Det:sg is canonically L, but in degree 1. This means that

Det 2 1s also €, but that the group of permutation

s2us?y...uns

the spheres acts on it by the sign representation. The essential property of the determinant line is (6.2), which, as

s obvious that DEtXL(Y = Det:x ® Dety, is a particular case of

If the surface X has no closed components there is another

description of Dety. Let Hol(X) be the vector space of holomorphi Propasition (6.4). A sewing map X » X, i.e. one which sews outgoing

functions on X. The space of smooth functions 0°(3X) has a splitti] ?é of X to incoming ones, induces a canonical isomorphism

QP (%) @ 0°(3X), where Q) denotes the functions which satisfy the

boundary condition above.

§ more convenient for the saquel if we change the definition of =
composing it with the automorshism af O%/yws s = - - X
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h'd
Proof: First assume that X is not closed, and that it is formed by 1f X is not closed this is already implied by (6.4). It is

sewing together the parts §, and S, of X to form a curve S in X. we

have a commutative diagram

A R
0 B
0 = Hol(i) - Hol(X) + 2(8) » 0 “in X then we know that

L T4 id {

o » aehH » g, o) » 9%s) » 0.

° o~ ¢ ° o~
DetX-Dl = DetX-Dl-Dz £ Detx_;)z.

Here A is defined by &(f) ~ £|5, - £|5,, and * by shall therefore leave the proof of (6.5) to Appendix B (311 ),

() = (fléi).,.. AD) ) In proving (6.4) we made use of

The rows are exact, (To see that A ig surjective, let Y be the suri: Iil'a'lﬁla (6.6).- If S is a union of outgoing boundary circles of a Riemann

formed £rom two copies X, and X, of X by attaching 8, ¢ X, to §, € rface X then the map £ > (£|S). from Hol(X) to Q2(S) is of trace

Because Y is a Stein manifold, any smodth function £ on § = X, N X
be written f, |S - £,|s, with fi € Hol(xi).) Thus Dety & Det(z). BiE

Dety is the determinant of =y ! Hol(X) =~ ni(aX). We can identif it i; enough to prove this when X is an annulus and S = S, is

0%(s) with 23(s,) @ 0%(s,), and hence 0J(3X) with ﬂ_?_(bf) @ Q°(s) .. outgoing end. Indeed because diffeomorphisms preserve the

xg - © is the map £ v (£]8,). - (£|s,);. This is of trace class decomposition 0°(S) = 0(S) @ 0°(S) up to trace class operators (see

Lemma (6.6) below. But the determinant line does mot change when t 5]( )) we can assume that X is (z ¢ € : r < [2] < 1) with the

operator is changed by an operator of trace class (see Appendix B t':andard pa:rametrization.' But then Hol(X) -~ ﬂf(S‘) factorizes

the result is proved.
Hol(X) » Q§(5,) » a%(s,)) ,
The case when ¥ is closed can be dealt with by making a hole

so that it does have a boundary, and then using the following resi{l. érd the second map is the diagonal operator taking 2* to £¥2*. This

learly of trace class.

Propositiou (6.5). FPor anmy surface X the line Dety does mot charige

when the interiors of one or more holomorphically embedded discs:

removed from X.
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The central extemsion of pifer(s™)

An important property of the central extension of Diff(S') which

's easy to see in terms of the determinant line - or rather in terms of

We can now see why - as was mentioned at the beglnning of this the .splitting of 0°(§') into positive and negative frequency - is the

paper - the determinant line gives rise to the basic central extensia 1lowing "reciprocity law". When we have a surface X with boundary we

of DLEET(S'). One way of formulating the result of [$1] §7(b) is tha &an put together a copy of the standard extension of Vecty(s') for each

the basic central extension of Diff"'(S‘) consists of pairs (p,\) wit boundary cirele to obtain an extension VectE(aX) of Vectm(a}{),

p € Diff"'(s ) and X € LS" where Lgo i{s the determinant line of the

Toeplitz operator T‘p : (S ) = ﬂ+(S ) which is the (++) block of th

action of p on N%(s"). But L » is equivalently the determinant line

Pfdposition (6.7). The restriction of the extemsion Vecta(ax) to the
\ibalgebra Vect(X) of holomorphic vector fields om X is canonically

plit.

B, 2 Q°(sH) = 0sh) @ Qs

oof: The extension of Vectm(ax) measures the extent to which the

£e>r ( (p*B)y. £1) . tor fields fail to preserve the decomposition

B(>x) = OU(3K) @ Q°(3K). If we write Ty for the @, - &, component

1f the diffeomorphism y is regerded as the limit of a family of anm the action of a vector field £ then we have the following explicit

A then Psa is evidently the limit of the operators ymula for the cocycle (cf. [P§1(6.6.5)):

7y ¢ Hol(a) = Q3(38) . (&, r> trace([Ty, Tyl - Tpz q)) (6.8)

= trace(J[J,£](J.7])
More precisely. in terms of the proof of (5.5}, if A is the standaf:

annulus (r < [zl < 1}, we have L P<PTA’ and hence fe J is the operator which defines the splitting @ = Q,+ @ Q_, i.e,

« +1. If the decomposition is changed by replacing J by another

*
det(P(p) - Det:v’A @ Det, . gratoxr JX such that K = Jx - J is of trace class (and J}z{ = 1) then

cocycle (6.8) changes by the coboundaxy

This makes clear the semse in which the central extension of Diff"*.(s

is the "boundary” of an extension of the semigroup & . (E,n) w» 2 trace([£,9]K)

To understand why the pairs (p,M ¢ Lp) form a group it is bes

regard LP' in the notation of Appendix B, as Det(W;¢W), where W is t'us choose Jy corresponding to the decomposition 09(3X) = Hol(X) @

element of Gr({1°(s')): this lime does mot depend on W. i(Y), where Y is a collection of discs with ¥ = 3X, so that X U Y

4 closed surface, and Hol'(Y) means the functions which are

automorphisms of a rigeed circle.
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holomorphic except for a pole (or zero) of an appropriate order at the : that we have a holomorphic field theory with central charge c, so that

centre of one of the discs. The difference Jx - J is given by an 4n operator Uc,oz in H is associated to the annulus A together with a

integral operator on 3X with a smooth kernel, so it is certainly of olce of o € Dety, and UA.Mx - *CUA, o for M ¢ C. Then the trace of

trace-class. On the other hand, the subspace Hol(X) is preserved by U, o depends only on the image & of & in the line Dety. There is a

holomorphic vector fields on X, so the cocycle trace(Jx[Jx, 1 {Jx,7]) ¢anonical element ¢, ¢ Det,, for the 3-operator is an isomorphism. The

vanlshes on Vect(X). rtition function Z of the theoxry is defined by

Another result which- £its in paturally at this point is Z(r) = trace UA e
A

Proposition (6.9). Fox any modular functor the extensions of Vect(s') here A 1s the standard amnulus determined by q = ez"i", with Im(r) > O.

corresponding to its labels all have the same central charge. £ v 1s replaced by 7' = (ar + b)/(er + d), for some g -( 2 3) in the

”

odular group ' = SL,(Z), then A changes to A', but the torus X does

Proof: Suppose that X is-a disc with two holes with boundary circles ot change, so we have

5,15;.8, labelled ¢ ,p,,9,. Let cy be the cemtral charge coxrespondi

to p;. We must show that ¢, = ¢, = C,. Let §; € H?*(Vect(X);C) be thie z(r*) = p(7,88° Z(r) , (6.10)

class of the extension of Vect(X) pulled back from the determinant 1ii

extenslon of Vect(S;). Then Eo + S, +E, = 0; but £, and £, are hare p(7,g) is the ratio of the images of the elements ¢, and ¢, in

linearly independent, because by filling in, say, the second hole we' ety. (Note that p(r,g) depends on g, and not just on 7 and r’,

embed X in an annulus A in such a way that §, +> 0 but §, & 0 in écause one must choose an isomorphism between the tori X and X'.) The

H?(Vect(a);C) = C. ' Now the modular functor gives us an extension o ruclal result is

Vect(X) with class X ciEi. We know that it is split, and therefore

oposition (6.11). We have p(r,g) = u(g)ezwi(r"f)/"", where

L ey =0, and hence ¢, = ¢, = ¢,.

' » p, is a canonical homomorphism from I' to the group g, , of

Modularity and the %-function roots of unity. In other words

Our final task in this section is to give a completely explici (q')‘c/"z(f') - u(g}® q'c/‘zz(r)

description of the isomorphism Det, = Dety vwhen A is an annulus and

X = X 1s the torus got by joining its ends. We need this to find The line Dety attached to a torus X is the dual of the line of

modularity properties of partition functions. Suppose, for example lomorphic differentials, so it contains a lattice A = H, (X,2) given

t:}'le geometrical cycles. Let £,Y ¢ Dety correspond to the cycle 7.
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496 Segal
1f X is formed from an annulus A this gives us a preferred element £,.. Applying this to the case (L,A) = (B, 2+ 71 Z) for Im(r) > 0 gives

;s a 12-sheeted covering of the upper half-plane with an action of the

It is natural to expect that §, should be related to the image of ¢,,
group SL,(Z) on it; and considering how the sheets are permuted gives

and in fact it 1s very easy to prove
t?he homomoxrphism u : SLz(Z) * By, which in fact describes the

abelianization of SL, Zy.

Proposition (6.12). The image of ¢, in Dety is

at this point we could assume the properties of 7 and deduce
0 (-q™ 2.k s - .11) from (6.12). But it is obviously moxe satisfying to deduce the

w0 .
operties of 4 from-general facts about the determimant line. I shall

Ve an argument based on Mumford's theorem (5.9), but I should mention
1at Deligne has given a much more 1illuminating argument, which,

When A is changed to A' by g ¢ I’ we have
owever, it would require too long & digression to explain.

fpr = (er + a'.¢ A (6.13  Fox my argument we consider alongside the line Dety the
"terminant line E}((’) of the J-operator acting on forms of type (2,0).

I — @ .
and so, in the light of (6.12), the ressult (6.11) is equivalent to t rom (5.9) we know that B§2) = Det}'?, and, more precisely, that
et:?i's ® (E&z))* has a canonical element py which is multiplicative in

modularity property
the gsense that py.y = px-Hy: But the proof of (5.9) shows that for an

.miulus A one has p, = eAa'e'A' , Where ZA is the standard element of

A

tharacterized by multiplicativity with respect to the relation

() = u(g) (er + 7O ? (6.1
z). (The reason for this is that all of these standard elements are

of the square of the Dedekind y-function, which is defined by
' o AeoD= D o Din the category 4 . HNow the map A - X takes p, to

70(r) = e™i7/12 1 (1.4™ and so theé image of ej® €.’ depends only on X. But Proposition
>0

712) can be generalized to a statement about the determinant line

; 5 @
Indeed, (6.16) can be taken as a definitiom of the homomoxphism u. m.) of the 3-operator acting on { ™ for any value of m. An amnulus

B m) has the usual canonical element egm), and for & torus X there is

existence and modularity of the 7-function amount to the folloving
geometrical statement: ' lement fém) for each cycle 7.

if L is a complex line equipped with a lattice A then there is
position (6.15). The image of egm) in E}?“) is

canonical isomorphism I®'Z =€, i.e. a canonical map £ : L + Cwhi

is homogeneous of degree 12; in particular L contains a distinguish
set g, = £71(1) of 12 points. -1t q*’“(‘“‘‘)“go(l-q“)'2 g(m
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On the other hand, when X is a torus Eﬁz) can be identified with

Dety, for

B{? = B°BH* g B (%;0°%)
s 1O PHY g BOKAN )
= wo(x;ah*

-~ Detx .

(Here the second isomorphism comes from Serre duality, and the third
£52

from the product P? @ ag®-1) 4 g'.) Under this identification

corresponds to £p-

Putting together the isomorphisms E)&z) =3 Det§'3 and E,&z) & Dety

gives us Det?i‘z # T, by a map which takes

gV I (1-g™7 gAY = g(r) "0 ELT

to 1. This is precisely the statement that 7(r)?? is a modular fordi

weight 12.

It remains to prove (6.15), which, of course, includes (6.12)

Using (6.4) we can identify E]Em) with the determinant line of

isomorphism
my : O0R@) » PP

given by my(£) = (pi£), — (gof)., where py,p, © §' > A axe the

parametrizations of the ends of A. The operator 7, itself define

o
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ement egm), while & gm) is defined by the Fredholm operator = such

that 7(f) = p’:f - ¢’;:E , together with the obvious choice of isomorphism
stween its kernel and its cokernel. The ratio of £ gm) to e‘gm) is
:‘erefore the determinant of ¥ o ¥,' restricted to the subspace of

{§') spanned by all zFdz ™ with k # -m. This operator is dlagonal.

¥ multiplies z5dz ® by (1 - ¢ Lf k 3 0, and by (1 -¢'5™ 1f k < 0.
:“é determinant is therefore (-l)m q'*m(m")ﬂ (1-q™?, which proves

6.15).
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§7. Spin structures: discrete coverings of ‘@

omorphism (3X,LJ3X) = Cn,nx - Cm,m' . It is easy to see that there

‘no morphisms Cm’m. > cn'n, unless m' = n' (mod 2), in which case
The categoxies £ spin gna 56

‘morphisms form a principal bundle over Mor\g (Cpim' Opyn ) With

p H'(X,5X;2/2). In particular the identity component of the
+al £inyr”

The kernel of the universal central extension of Diff (§') emigroup of endomorphisms of G, ,0 is a double covering of n#. and its

R@ Z |S2). The coordinate functions on R @ Z, in the notation ¢ Jov boundary is a double covering of pifft(s?).

(5.8) are (c,h). The determinant line accounts for the factor R,

while Z is the centre of the simply connected covering group of

“There is no obvious generalization of ¥SP1™, For any n one can
piff¥(s'), i.e. of the contractible group of diffeomorphisms

nstruct an n-fold covering of the semigroup 3 by considering pairs
¢ - R - R satisfying (¢ + 2r) = ¢(9) + 2x. Having discussed th : y such that L8 & TA; but that does mot work for general surfaces X
determinant extension it is natural to ask abodit extensions

commected with the fundamental group. The most important one is t There is, mevertheless, an extension ‘G of @ associated to each
spin covering. €e group G. The objects of € are primcipal G-bundles over
A spin structure on a circle S 1s a real line bundle L on § A_'iiinensional manifolds, and the morphisms are principal G-bundles
together with an isomorphism L ® L & TS. There are two possible Riemann surfaces. Un_like igspin’ the extension -.gG is split: %
choices for L: trivial or Mobius, I shall write Sp and 8, for th 1f is a subcategory of 6.
respective paixs (S,L): the letters stand for "periodic' and The principal G-bundles over S' correspond to the conjugacy
"antiperiodie”.

) s of elements of G: I shall write them Sé for g € G, The
A tructur Riemann surface % is a holomorphic 1ii ; 1 G

spin structure on a Rie P . rphisms of Sg in 4 € which cover an amnulus A correspond
bundle L with an isomorphism L @ L & IX, where now TX deunotes th ifonically to the elements of the centralizer Z, of g in G
. g .
complex tangent line bundle. 1f X has a boundary then a spin st

dge a path y joining the base-points of the ends of A, and assign
L on X induces one on the boundary, for.the positively oriente

~bundle on A the monodromy along 7.) More precisely, the

rphisme of Sé over # form the extension of & by 2y defined by

vectors to the boundary of X have square-roots which form a real

in L|3X. Every surface possesses a non-empty finite set of spin

momozrphism Z = w,(&?) > Zg which takes 1 to g.

structures: they are acted on simply transitively by the group :

H'(X;Z/2), for two spin structures on X differ by tensoring witd Ssoeiate
d modular functoxs

line bundle.

The category $ SPI™ has objects Gy 4 for m,n' 3 0, where e categories b 5PI® ang $€ give rise to modular functors in the

: 1 ' 1 . :
the union of n copies of Sy and n of Sp. The morphisms cm,m'

§5. lLet us first consider 'BG. We shall denote the set of

are Riemann surfaces (X,L) with a spin structure and a given hism classes of principal G-bundles on a l-manifold § by B(S)
. '
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and 1f P is a G-bundle on 3X we shall demote by T(X;P) the set of
isomorphism classes of pairs (Q,x), where Q is a G-bundle on X and
an isomorphism Q]bx 5 P. Thus if § is a union of components of 3X tii
group Aut(P|S) of automorphisms of P|S acts on B(X;P). The
patching-together property of G-bundles is expressed as follows. Ifs.
X o x‘ UXx, is a union of suxfaces attached along S 0o ™ 3%, n axz, an

Sy = (9%y) - S, then

Tx;e) = M X, s PLURD) X P
B¢ “J’(So) Aut(P )

where Py = P|S;. There is a similar formula far attaching twe edges

of the same surface. We can now introduce a modular functor E whos

set ® of labels is the set of isomorphism classes of pairs (e,v), wh

P e B(S') and V is a complex jrreducible representation of Aut(P)

For a surface X with boundary circles S,,... »Sic labelled with (®;,

we define
E(X;P, V) = Mapp,e(p) (PE:2); V)

where P =P, 1l ... P and V=V, @ ... @ Vi. The property (7.1

translates into

E(X;R,V) = @ E(X,I;P‘ u P(l' v, ® V%) 8 E(xz;Pz i1 Po' Vz'
(BgrVy) ‘

The Verlinde algebra Ag of this modular functor has arisen

another context in work of Lusztig [L.]. Additively we have

The Definition of Conformal Field Theory 503

8 = D reep ,
g °

here R(Gg) is the representation ring of the centralizer Cg of g ¢ G,

and the sum is over the conjugacy classes of elements of G. Thus Ag

tén be identified with the equivariant K-group KG(G), vhere G acts on

In particular, if G is abelian the ring A; 1s the group ring of G X 6,
ere G = Hom(G,T).

_ To make everything as explicit as possible let us observe that
en'X is a torus E(X) is the vector space of funct::ions on the set of
ugacy classes of pairs of commuting elements (g,:8,) of G.
structing X from an annulus gives the standard isomorphism

® € 9 E(X) which maps x ¢ R(Gg) to the function

(8,:8,) H—> { x(g,) if g, =g
0 if g, is not conjugate to g .
- 18 regarded as a space of functions on a subset I' of G X G by

ap the multiplication is given by (£,,f,) +> £,*f,, where
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(£,%E,) (x,¥) = Z £,(x, ,NE (X T)

The action of SLZ(Z) in this

on [ = Hom(Z%:G), and ome can easily check Verlinde's theorem (5.12)}

Another aspect of the general theoxry which is easy to see in
example is the vector by € E(X) associated to a 3.manifold Y such that:
3Y = X. Fox ‘I'Y is simply the function on the set 'Q"'(X) of classes

¢-bundles on X whose value at a bundle P is given by

Py(E) =

(Q,e) e ® (Y, P)

Little needs mow to be said about the modular functor associa_.

to € SPIP  Instead of €(S)

of spin structures ®(s) and

3X. " The group of automoxphisms of o is HO(3X;Z/2). It acts on

8(X;0), and there is a sewing

£
modular functor with four labels AY and P, corresponding to the

spin structures on s and the two representations of the group (_:

automorphisms.

- G spin
The definition of a field theory based on 4G or ESPM is

For € SPIM, for example, we

H(S,0) from oriented l-manifolds with spin structure, and a ray
H(S,q) for each Riemann surface X with 3X = S equipped with an ¢

of ¥(X,0). I shall mot repeat the conditions to be satisfied;

Segal

xlxz-x

description comes from its natural actid

1
2 e o]

and (X;P) we have the correspondin

8 (%;0), where ¢ is a spimn structure

property just like (7.1). We obtal

should have a projective functor (S

The Definition of Conformal Field Theory 505

notice that Aut(¢) will act on H(S,o). If it were mnot for the
ojective nature of the functor we could say at once that such a

theory defines a_t;veakly‘ conformal theory with respect to the modular

f}mctor described above. For each label (o,V) for S we could define a

H(S,(0,V)) = (H(S,0) @ yyhut(o)

d'when X = § we should have an Aut(c)-equivariant map

(X,0) = H(S,0) which would induce

E(X, (0,V)) = Mapp,p(q) (3 (X,0)5V)
- (E[F (X,0)] @ V)AUE(D)

<+ H(S, (o, V))

‘not much needs to be altered to take the projectiveness into
céount. A central extension of $SPIN gofines a line bundle L on
:0) which is equivariant under Aut(¢), and we simply define a
g[fied modular functor E for which E(X,(s,V)) is the space of

stuivariant sections of L @ V.
omological description of spin structures

esides the direct geometrical description already given we shall

o make use of two other ways of characterizing spin structures.

irst is cohomological. If y is a smooth closed curve in a closed

e X then a spin structure L on X is either Mbbius or trivial on
6fine o () = +1 or -1 accordingly. It turns out that oy defines a

tic form on Hx - H1 (X;Fz) = H! (X,Fz) which is associlated with the

uct (or intersection), i.e.
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- + Yy . 7. ;
oLy, + 7Y = oY) * oY) + 77, (7.3 héx hand a spin structure L on a surface X can be described by a

ctio :
| m oy : Hy - F2,~where Hy = H, (X,aoX;Fz) and 3 X is the set of

Obviously the function oy déscribes the spin structure completely. Thig (Here o 2w - Fhaadiuet e X

AFer AL o l.“.ﬂl\'\': n(;

L. l...-x)gﬂ\tl Wi "._ G [-({t .“(4. s:(w‘-“\“ ’( ﬂ“ f: - L

can alternatively be expressed by introducing the abelian group ﬁx wi o Foned e C : v
v« v vl oeeds x o0 3P

is t] t f Hy by P, got b sing the cup-product as -L___Ll
which is the extension of Hy by ¥, g y using p-P dgsition (7.7 For any surface X there is a canonical extension fi
X

cocycle. The formula (7.5) means that op is a splitting of the 5t By by F,, and a canonical homomorphism Hb + H., such th
. X X at spin
extension Hy - Hy. A theorem of Atiyah [A1] assexts tuctures on X with a given restriction to 3X correspond canonicall
cally

» plittings of ﬁx extending a given splitting of ﬁbx-
Proposition (7.6). Splittings of the extemnsion 'ﬁx correspond

canonically to spin structures on X. 60f: The main point is to define ﬁx Suppose that X has k
e . as

mponents. Let Y be a standard sphere with k standard holes and a
Remarks. The group ﬁx is simply the group of units of the commutativ

en tree y linking the base-points of its boundary components

o ~ Let
ring H*(X;F,). Another description is that Hy = KO(X), and - beca U Y. The inclusion (X, boX)

2 H1 (x*’Y) = HX*.

2 (X*,y) induces an isomoxrphism
spin structure is an orientation for KO-theory - the splicting But
we know how to define H £
o ‘ g+ for the closed
associated to a spin structure is the corresponding Gysin map KO ace X*, and it is m.)w easy to deduce (7.7) £ (7.6
. Tom .6)

KO~ *(point) = Z/2. Yet again, the set 3){ of spin structures on X

affine space of Hy, and there is a function o : 3 x * F, which taki tructures and extensions of loop gr
p_groups

L to the parity of the dimension of the space of sections of L*.

choice of spin structure ldentifies 3 g Wwith Hy and makes & into thi e last way I shall mention of describing th i
8 spin structures on
quadratic form oy.

ace X is in terms of the group D;[( of holomorphic maps X » CX,

Proposition (7.6) can be generalized to surfaces with param 1z ¢ ition 7.8 For av

. ery spin structure on 3X (with an even

numbexr
boundaries. (In fact all we shall use of the parametrization is tiodic components) there is a central tensi E;é D}’{(
: extension of by F

choice of base-point on each boundary cirele; and all that is re hat splittings of %( correspond precisely to spi
. Pin structurss on
needed is a choice of a double covering of the boundary.) If § is

1-manifold with a base-point in each component, let 5, be the sef

base-points, and let Hg = H,(5,5,;F,). Define Hg = F, # Hg. Th shall give the proof in §l2. (See also the end of §8.) At

structures on S can be identified with splittings of ﬁs -+ Hg int I shall make just two remarks
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(X,Z), and if 3K = s' th The Grassmanunian catepory: chiral fermions

(i) The group of components of Cf is W'

- — = 1o,
t})é is induced from Hy by the natural map E'),x( + H (X,Fz) Hy

result is clear in this case.

(i1) Gilven a spin structure L on dX the group E);x of smooth map

©¢ acts on the polarized space ﬂi(ax;[,) of }-forms on d%. Thi g "For clarity let us begin with finite dimensional vector spaces. 4

K -
CX. The extension @é 0

=X
gives us a central extension Lyx of C)gx by

(7.8) is a canonical subgroup of the restrictiom of Exéx to D’é

WT ww ((Tv,-v) : v ¢ Vo) .

‘mdy ask whether the categoxy of finite dimensional vector spaces
inear maps is contained in a larger category in which the set of
hisms V, -+ V, is the Grassmannian manifold Gr(V, & V,) of all
paces of vV, eV, If Wy € Tr(V‘ @ Vo)' and W,, € Gx(V, @ V,) one
d'try to define the composite W,, * W, by

Wy, ¥ W, o= 1(v,,v) eV, 8V, : v, eV, such that

21 1

(vz,-v1) e W, and (v, i-vg) ¢ Ww)

= pr, ((W,, @V N (V, & W, ,)), (8.1)

t,, V, 8V, @V, » V, @V, is the projection.

dim(W'o) =n, + a and dim(¥,,) = n, + b, where ny = dim(V;),
merically W,, * W, , has dimension nj + a + b. In fact,

* W,5) = ng + a+ b if the following conditions are satisfied:
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0 W,, *W W w v, » 0.
(i) W, eV »> Vv, is surjective, and > Yo 10 2 ¥, 0W, » ¥V,

21 10

-the conditions (8.2) are not satisfied, then T, T, = 0,

o
(11) ¥y, @V, V,(BV1 eV, is injective. W“,p WW,)\

wh these conditions do not hold the composition law is obviously tolla 8.5). (i) The category of finite dimensional vector spaces
ere

i d linear maps is a subcategory of a categoxy Y which has the same
badly discontinuous.

But we can do better. B s bspace W of V, ® v, defines a ray ects, but in which a morphism from V, to V. is a pair (W,\) with

the exteriox algebra A(V, @V y, and hence, up to & scalar multiple; Gr(V, @ Vy) and h ¢ Det(V,iW). (Here (W,)) is regarded as
1 0’7 .
AV AV Fot dependent of W if A = 0, i.e. (W,7) is really an element of
linear map Ty @ o 2 Ve .
@ Vg) @ Det(V )*.)

(1i) The exterior algebra functor V +» A(V) extends to Y, though

"

AV, B V) AV) 8 AYY)

".funetor into vector spaces rather than algebras. The morphism

"

ACY.) @ ACY)* ciated to (W,\) raises degrees by dim(W) - dim(V.).
1 0

An endomorphism T of A(V) has a trace and, more importantly, a

m

Hom(A(V,) ; A(V,))

supertrace txg(T) = (-1)Ptx(T|AP). It is elementary to check

The isomorphism l\k(Vo) - A“‘k((vo)* used in (8.3) depeuds on thé:

5 o'sition 8.6). If (W,A) : V » Vin V induces T : A(V) + AV
cholce of an element of det(V )*. Thus to get a specific map Ty w.n A S

need not only W but also an element X of det(W) @ det(V)* = det(V tr(T) is the image of A under

we shall therefore write it Ty . One readily verifies

AV @ V) @ Det(V)®* 2 A(V) ® Det(V)* ~» C,

Proposition (8.4). IfW,, <V, @V, and W,, €V, @ V, then . i
re.the first map is induced by subtraction VgV - V.

T

T W“*Wm.}l@)‘

T -
Wauok © Wigd ;.
k.. If we used addition V@ V -+ V rather than subtraction we

if the conditions (8.2) are satisfied, where p ® \ refers to the 1dobtain the trace instead of the supertrace.

isomorphism det(V‘;wz‘) ® det(Vo;W1 0) = det(vo;wz‘ww) .
induced by the exact sequence More generally, amap T : A(V, ® V) = A(V, @ V) can be collapsed

map ¥ AV = MV, by taking the supertrace over A(V).
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Proposition (8.7). In this situstion, 1£ T is induced by (W,3) in

btain a holomorphic line bundle Det:w on Gr(E). These bundles are all
o

v vV v .
then ¥ is induced by (#.X), where somorphic, but not canonlcally: an isomorphism Detwo - Det:W1 is the

ame thing as an element of Det(Wo;Wl). For a discussion of all these

% (v, -v) €V, @ Vi (v, VY, -v) ¢ W for some V € vy, acts I refer to Appendix B. Let us notice also that the line
- 1,— 0 1 o 1V r .

ét(WO;W1) is naturally a vector subspace of EW (E), i.e. the bundle
0

and % is the image of A under :étwa on Gr(E) is a sub-bundle of the trivial bundle Gr(E) X "&WO(E).

w

ACV,@VGV V) 8 Det(V av)* AV, @V,) @ Det(V)¥* @ ACVeV) @ DectV)

We can mow repeat the discussion in this sertion using the

tegory of polarized topological vector spaces and systematically

¥

MY, ® vo) ® Dgr,(vo)*: . téplacing the exterior algebra by its analogue for polarized spaces,

ich s the Fock space.

Polarized vector spaces and Fock spaces

finition (8.9). For W e Gx(E) the Fock space '3'W(E) is the dual of

i¢ space of holomoxphic sections of Det;;.

We are not really jnterested in finite dimensional vector spa

Instead we want to considexr the category of polarized ropological: Thus the projective space of '3‘w(E) is independent of W, and amn

vector spaces. morphism %WG(E) > %W1 (E) is given by an element of Det(W,;W,;).

icall from [PS] Chap. 10 that if E = E' @ E” is an allowable

pDefinition (8.8). A polarization of a topological vector space B omposition then we have a map

class of operators J : E » E such that J? = 1, any two differin

-k CN
an operator of trace class. AMEI @EH » B g (E)

Thus a polarized space E has a preferred class of decompositi % identifies the left-hand-side (intexpreted algebraically) with &

E = EY @ E- into the 1l eigenspaces of J. The typical example i dénss subspace of the Fock space.

space Q°(8') of smooth functions on the circle, with Y and B~ spamm The analogue of the finite dimensional isomorphism

by (eiﬂo) for n< 0 andn > 0 respectively. ® Det(V)* = A(V)* is a bilinear mep

A polarized space has a (restricted) Grassmarmian Gx(E) which

consists of the -1 sigenspaces E- of all allowable I's. If W, ad ’3-E+('E') x'a-E_(E) > C, (8.10)

are two subspaces belonging to Gr(E) we can define a canonical

determinant line Det(Wo;W,). Holding W, fixed and lettimg W, \Ta'
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where E demotes E with the reversed polarizat:ion-class, i.e. with J orm is defined only up to & scalar multiple'. The immex product
: . uct on
replaced by -J- (For the definition see Appendix B.) 4(E) coming from a real structure on E is hyperbolic, i.e. as far as

P'ossi'ble from being positive definite.

e now have

jral fermion theories

. Proposition (8.11). (i) There is & category 7);01 whose objeéts ar

pairs (&, ) consisting of 2 polarized topological wvector space and%\ . We can now give our first examples of conformal field theorie
. 8.
choice of J, and whose morphisms (EO,J o) »> (B,.J ;) axre pairs (W, ot any integer « ome has the space @& o ¢ aifferential forms of

3 = - .
with W ¢ 6r(E; 8 Ey) and A ¢ Det(Eg @ ELiW). dégres o on the circle - i.e. expressions of the form £(6) (@ae)®. This
(ii) The Fock space is a Ffunctor from v'-pol to Z-graded topolog

vector spaces and trace-class maps. It has exactly the same propett

s polarized by ©* - oF @ 0%, where o (resp. (™) is spanned by

né o

) (d6)* for n < 0 (rssp. n » 0). The class of the polarization is

with respect to vgewing" and the supertrace as held in the finite ° dependent of the parametrization ([es] p-91), so S > (s

- D LIV Y is a

dimensional case. in particular, a_morphlsm (W,N) raises dimensio functor from oriented 1-manifolds to v’ 1 Reversing the orient i
pol’ entation

2 -
the relative dime fon dim(W : Eb @ E]). ‘erses the polarization class, and so does complex conjugation in 0%

the other hand for each Rlemann surface X with boundary we have the
The cAteEOLY ?}; o1 is thus formally analogous to the category ace (%(X) of holomorphic p-forms £(2) (dz)* on X, and (see PS ] Gi10))

made from circles and Riemant gurfaces, and the Fock space functo

snalogous to a fleld theory. To make the analogy complete we mnee “Proposition (8.12). The space G*(X) belongs to the restricted
cte

hermitian structure. If E has a hermitian inmer product, and the ;'ssmamian Gr(ﬂa(b}l)) Its dimension relative © QY(oX) 1
. o 02 s

polarization J is self-adjoint, then the Fock space 4] inherit

inner product. 1f B is positive-defim.te then so is F(B). But thi da(X) - (20-1) (gtu-1) |

is another way to give'ﬁ'(E) an inmer product, using the canonical

pairing (8.10y. If Ehas & real structure, l.e. an operation of : ife m is the number of oucgoing boundary circles

complex conjugation, which interchenges gt and E7, then ¥ (B) = .?:-ZB)

and (8.10) becomes 2 hermitian form. 1f the conjugation exchangés:! .-Here (ﬁ(ax) means the sum of a copy of as'Y (resp ashy) £
+ . - or
and E- only up to & finite dimensional diserepancy - moxe precisei h incoming (resp. outgoing) circle

1t anticommutes with J modulo trace class operators - then the he¥

(#)7A ‘better way_to s& this is: th
e te Dec(E";E"‘)}j : ere is a hermitian form on '3‘E-(E)
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Gorollary (8.13). g% defines a functor from % o 7/;01, and so The most interesting of the theories #(0%) is the one with o =-1

s> 3 (@(s)) 1is a holomorphic conformal field theory. A surface X r

o= 2, 1.e. when 0%(s'y is the Lie algebra Vect(S') or its dual.

defines an operatoxr which ralses degrees by d,(X). This has ¢ = —26.

1t is the theory of BRS ghosts which was mentioned

it the end of 4. The grading of 3 (R*(S)) is the ghost number, and

The spaces I and Q'~® are in duality, but the duality reverses d

(X) = 3(gim-1) is the ghost number anomal_x. We shall return to this

the polarization, so the Fock spaces o(0%) and 40t ~%) - and with them sory in §9.

the field theories - are identical. By calculating the Lie algebra

ocycle one finds that the theory 3(0*) has central charge If o is an integexr the space @%(5') has no inmer product. But if
c

12a(l-0)-2. A physicist does this calculation in the following w } it has a natural positive definite irmer product, and we can use
c = aCI AT .

is instead of the real structure to define an immer product on ’5‘(515).
way.

Let Lp denote e'iP"d/do in Vectm(s'), and let "'q = e‘iqg(j_dg)“ i w poimt arises, however, because to define ﬂ*(S‘), and still mors

. We b o define .ﬂt(X) for a surface X, one must choose a square-root L of the
. e have

gent bundle Ts! or TX, i.e. a spin structure. (See §7.) Thus we
Lp-¥q - —i(q + oPI¥prq * ' (8.14 av.e
oposition (8.16). ! defines s functor from gspin oo V.

pol:
(5:L) +» %(ﬂ%(S,L)) is a positive-definite projective representation

and so
Let @ =ty Ay AV Ao in F*. Then

fsPin 4 o 4 weakly conformal field theory (cf. (5.2)), with

ritral charge ¢ = 1.

p-1
prn—i EO (m - k + op)uy
k-

if p > 0, where oy is obtained from w by replacing ¥p._x °Y Vi-letp” This theory is called the charged chiral fermiom. It is the basic

le of the structure we are studyin
p < 0 then pr—O. Hence amp’ ying.

For surfaces X with spin
ctures which are Mobius (i.e. antiperiodic) on each boundary circle

[L_p,Lp]co = [(a(l-o) - 1/6)p® + (m(mtl) + 1/6)ple . % dimension of O¥(X) relative to Q,J{(bX) is zero, and the assoclated

rator preserves the grading. For the spin structure Si,, as there is

Gomparing this with (5.6) we £ind vacuum vector in %(Q*(Si,)), it is not obvious how to grade the Fock
ompa ,

ce. The correct procedure is to grade it by Z + }, so that
e = 120(l-a) - 2 and h o= po(l-o) + m(i+m) . (8 SN ?0_1 Ay¢_, A ... has degree +4. The operatoxs of the theory then
erve the grading in all cases. From th'e formulae (8.15) we find
'.tDi.ff"'(S‘) acts on 'F(a¥(s})) with (c,h) = (1,0), and on b))
% (c,h) = (1,1/8).
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Field operators

We have seen that when X is 2 surface with K - §n u 8, the space

%(x), together with a point In its determinant line, defines an

operator

Uy @ F PGS, > FW@HS,))
IFE{=1L “1[211 is a divisor on X, i.e. a set (z,,... 12y} of points 1
the interior of X equipped with integral multiplicities (n,,... 1O}y

then it is natural to consider the space of holomorphic c-forms on
which vanish to oxder -n; at z4. (If n; is positive this means that’
the form is allowed to have a pole of order my at zy). This space wi
be denoted N%(X;!). Because it belongs to Gr(ﬂa(b}{)) it too define
operator ’3‘(9.“(50)) > '5'((1“(81)), at least up to a scalar multiple,
which ralses degree by da(x) + L ng. To get.a precise operator we mus

choose an element of
Det®(f) = Det(T(X);0%(X; %)) .

(I shall assume that an element of Det(ﬂ_“;_(ax);ﬂa(x)) has already beé

chogen, and is kept fixed in what follows.) Now
pet®({) = ®Dexz(p‘r"l (z9)) (

i i
where Pg(z) denotes the space of principal parts at z of meromoxphic

o-forms with nth order poles if n > 0, while if n < 0 then it denoté

dual of the space of (-n-1)-jets of holomorphic o-forms at z. Thus'
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Det(P:(z)) = ('rzx)®('tm+én(n+1))

for all n. This means that as the divisor ! varies we get not an

operator-valued function on the complex manifold
k.
((Z‘,...,Zk) e X M zij‘Zj)

but a holomorphic operator-valued form of multidegres (d,,...,dy),

where d; = —omy + ing(n; + 1). We write this operator
p(0rar® = gz 3@y Ly P L on e L (8.8

Despite the notationm it should not be regarded as a composition of
operators assoclated to the different points z;. It depends in an
alternating way on the ordexr of the points, providing z; is assigned
degree n;: that follows from the graded nature of the isomorphism
(8.17).

We have been assuming that the points z; are distinct. As a point
of the Grassmannian Gr(Q¥(5X)) the space O%(X; ) behaves smoothly when
the points come together (and their multiplicities are added
appropriately), and so does the line Det®(!). The {somorphism (8.17),
however, breaks down and must be veconsidered. As an illustration let

us consider the case of a divisor § = [zzl—fz,] contained in the

annulus

X-xab—(zec:a<[z| ¢ b)
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For simplicity we shall assume that @ = 0. We can define a reference Here we have written, as 1s usual, ¥(z) for ‘l'(‘)(z)- and y*(z) for

element of Det(J(dX);N°(X)) by means of the basis (£l ©of °(), ©1)(z). The proposition is usually stated as an "operator product

where

1
21°%

£,(2) = (z/b)F for k30 ¥ (z,0¥(2,) = + (holomorphic)

- (z/)¥ for k<O .

A good basis for Det?(?) is then represented by the basis (‘Pi‘f'k)ke
Q%(X;$), where pr(z) = (z-zt)/(z-zz). This behaves smoothly when

z, =z,. On the other hand, in terms of the isomorphism (8.17) the

. A similar, but easier, calculatiom can be performed for the

natural basis element (c‘iz,)"(dzz)'1 of the right-hand side correspornds sitive divisor § = [z,] + [zz] + ...+ [z2,] on the same annulus X.

to the element of Det®(t) represented by the basis (g) of Qux;h he operator ¥z )¥(z,) ... ¥(z,) corresponds to the basis for Q% D
whexre

ove. On the other hand a basis for Q¥(X; ) which is everywhere

gk(r) - (z.zz)“ - (zl-zz)"1 if k=20 fined is given by zkh for k¥ = 0,1,...,n-1 together with the (fk),
= (zk- lf)/bk if k>0 ere h = H(z-zi)". The determinant of the first basis in terms of
- (zk-zlf) /ak 1f k< 0. the  second 1s a Vandermonde determinant squal to I (zi-zj). Thus we

1<j

It is easy to check that the determinant of (uprfk] with respect to

ﬁtop.ositio'n (8.20). The operatox ¢(z1)¢(zz) ¢(zn)/ﬂ(zi-zj) is

omorphic for all z,,...,2z;. Its value when z, =z, = ... = 2p =2

is z,-z,, and so we have

Proposition (8.19). The operator-valued form s usually denoted

yx(z (2 ,) (2,-2,)dz, : 4¢Q°%(s*)) » B@S'N C 1 (2 ()P (=) ... v@® Dz o,

on the annulus X is holomorphic everywhere, and its value when' o GV = 112131 ... (m-1)! .

is simply the operator Uy associated to the annulus.

“the omission of Uy from the following notation, see the remarks
tér .(9.3).
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It is an instructive exercise To translate the field operators
just defined into their more usual description. The Fock space )
*4(07(s)) is a module over the exterior algebra of 0%(s'). As above
we write Yy for the basis element z-F %(dz)® of 0%(s'), and also for
the corresponding multiplication operator on the Fock space. The
formal series

Py

\II(W) - wk+(1‘1 \"k

2
keZ

does not define an operator in %(0°(s')), because it is unbounded

may not comverge. Nevertheless, let U, denote the endomorphism o

’3(9"‘(3')) defined by the amnulus X . This is a contraction operati

which depends only on a/b, and satisfies Ugpdy = (a/b)k"’kuab' it i§
A

to see that if a < |w| < b and a ¢ 1 ¢ b the composite U ¥ (n)U,, i8

well-defined operator in '3‘(90‘(5')). We have

Proposition (8. 21). The operator~valued (1l-c) -form Y(w) aw' ™% on th

annulus X, is given by

~
y(w) = Ulb.'l’(w)uan .

Proof: This is simply a matter of unravelling the definitions. Th
Fock space '3 -3 (n“(s‘)) has a natural basis (ms), where S runs
through an appropriate class of subsequences of Z. (Cf. [BS] Chap:
. _ ;

10.) The dual space 3" has a dual basis {ug}, where § = Z-5. The
»

operator Uy multiplies wg by (a/b)e(s), and as an element of 3

we can write U,y in the form

Ugh =~ 2 (a/py(® wg @ ug -
s
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Now O%(X4;[w]) is spanned by (z-w)™'dz% modulo 0%(Xgy). When this
form is restricted to the ends of the annulus it becomes
g o Z T
on one end, ond < e -k
g=~w' 3 & * ¥ x-o
k30
. ¥
on the other. The operator ¥(w), as an element of 3} ® 3 , 1s
therefore given by multiplying the expression (8.22) by L@y - 0 81,

and this amounts to the assertion of (8.21).

The bosonic description of T (0%

Each of the theories (™) has an alternative "bosonic”

* deseription. We shall explain this very briefly now, and shall return
to it in §9 and §12. For am oriented l-manifold S the group I!:>S< of
smooth maps S - X acts on O%(S) by multiplication, amd preserves the
polarization class (PS1(6-3D). It therefore acts projectively on

%(ﬂ“(s)). To give & bosomic description of the theory (%) means,

" in one interpretation, to construct it purely in terms of the represen-

- tation theory of the groups C’S< and C;é, the group of holomorphic maps

from a surface X to X,

Of course-all the spaces f¥(S) and ni(sa), with o ¢ Z and ¢ a spin
structure, are isomorphic as representations of C°s<, and ’9({1"‘(3')) is
the basic irreducible representation described im [PS] Chap. 10,
Nevertheless one must beware of identifying the 5(0%(s)) for different
ir, even as projective spaces, as the isomor.phisms involve a choice of
‘parameter on S. (At first sight this seems to contradict Schur's
lemma, but that lemma does not apply to projective representations.)
”"Concretely, one has a fixed representation H of C)5<, but a different

ction of Diff™ (s') on H for each &. These actions are described on

-page 208 of [PS].
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The bosonic description begins by prescribing a definite

The spin representation js best understood in terms of the
~,
projective multipliex on C>s<, or equivalently an extension C)S( of C)S< by:

isotroplic Grassmannian #(V) of all maximal isotropic subspaces of Vm

€% with a definite action of DAff'(s') on it. Them F5 = J@Eey i (CE. [PS] Ghap. 12.) If dim(V) is odd then $(V) is commected, but if

constructed as the unique irreducible representation (of positive  dim(V) is even g’(V) has two connected components (for W ¢ g(V)

o~
energy) of “3)(- To complete the description onme has only to give the _ defines a complex structure, and hemce an orientation, on V). There is

ray Fy in Fyy corresponding to each surface X. From the Fock space a holomorphic line bundle Pf on § (V) - the Pfaffian bundle - and in

description we know that the ray is invariant under the subgroup Ex the even dimensional case the spin representation 4 is the space of

C3x» so it defines a homomorphism & > €, i.e. a splicting of the holomorphic sections of P£¥, and can be graded in two ways. In

induced central extension of I‘%E From the bosonic point of view one: .particular, each W ¢ ?(V) defines a ray Pfy im W, which can also be

must give the splitting of the extension of “:))E directly. Then D;E .ac' | characterized by the fact that it is amnihilated by the subspace W of

on Fyz. One proves that there is a unique ray in Fyy which is - the Clifford algebra G(V). Indeed one can identify A with Pfy @ A(W),

pointwise fixed under E’é and calls it Fx This progra.mme will be ‘because G(v)/A(w) A(W*) when dim(V) is Odd, however, A is the sum

carried out in §l2. 1In §9 I shall txy to explain the relation of the - of two coples of I'(PEX).

representation theory to "bosonic fields". Let us also recall from [ABS] that if A; is an irreducible

G(V;)-module foxr 1 = 1,2 then A, ® 4, is an irreducible C(V, @ V )-
Even spin structures and the real chiral fermion

module unless bothA V, and v, are odd dimensional, in wh ich case

4,84, is the sum of the two distinct irreducible C(V, & V,)-modules.

There is an important varlant of the linear algebra of this We can now define a category 4Jorth ypose objects are pairs (V,4),

section. In finite dimensions the exteriox algebra functor Viy AV .where A is an irreducible G(V)-module. A morphism (V,,A)) » (V ,4,) is

has an analogue which takes a vector space V with an inner product .a pair (W,\), vhere W is a maximal isotropic subspace of V @ V and

the spin representation of the orthogonal group O(V). To be precis ‘N e (8% @ 4,)%7°" is annihilated by W. (Here V, demotes Vv, with its

let us consider real vector spaces V with non-degenerate quadrati .'. quadratic form miltiplied by -1.)

forms, mot necessarily positive-definite. The spin representatlo A moxrphism (V_,A ) 5 (V,,4)) in Uorth defines a linear map
o’ 1?

O(V) is a mod 2 graded complex projective irreducible representat s Ao 2 A, of degree 0, and the group of automorphisms of (V,A) is the

on which the orientation-reversing elements of O(V) act with degr complexification of SpinS(V). A general morphism (V,.4,) » (v, .4,

Alternatively, A is an irreducible graded module for the complexi corresponds to a choice of isotropic subspaces Py and P, InV, ¢ and
0,

Clifford algebra (V). (See [ABS].) If dim(V) is odd then A 1 V1 ,p together with an isometry P';'/Po » Plp
1/ %

uniquely determined up to isomorphism, but 'if dim(V) is even the

two possibilities (which differ by reversing the grading)', and & Now let us turn to polarized infinite dimensional real vector

of A corresponds to choosing an orientation of V.,

spaces with quadratic forms. In this situation a polarization of V
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. 2 [
means a class of skew transformations J : V = V such that J 1 E(X;L,A) = @E(X;L) ca,
L

modulo trace-class operators, two members of the class differing as
usual by trace-class opsrators. (G£."(10.3 ).) The theory of where E(X;L) is the subspace of the even part of A which is annihilated

irreducible modules for the Clifford algebra C(V) proceeds just as in by T(L), i.e. by the bound values of holomorphic sections of L 1f

) i dim(ke is : ; 5 :
finite dimensions. There are two cases, according as dim(ker J) is all of the L; are MSbius then A is an irreducible representation of the

even or odd. We shall refer to V as even or odd correspondingly. I lifford algebra of 95 ($;1), and the maximal isotropic subspace T'(L)

either case there is an ilsotropic Grassmanunian g(v) consisting of ‘annihilates a unique ray in A. The spin structure L is called even or

maximal isotropic subspaces W of Vg which belong to the polarization 0dd relative to A according as this ray belongs to the even or odd part

class (i.e. which are the (+1) -eigenspaces of allowable polarization £ A. Thus when L is purely MSbius we have

operators J). It iis conmected if V is odd, and has two components i
is even. There are respect:ivgly one or two ilrreducible graded modul dim E(X;L,4) = I(aven spin structures on X relative to A)|

for G(V), and we can define a category rv’orth

pol analogous to

orth .. .
U . £ on the other hand L has 2q non-MSbius components then

Finally we come to Riemann surfaces and their boundary circles dim E(X;L,A) =~ zq-|| (spin structures on X)|

We shall defime a weakly conformal unitary field theory based on a: — 2281

modular functor with three labels which I shall call the ¢ven spin’

functor. The theoxy itself is called the real chiral fermion. It

A e —————

whete g is the genus of X.- (In these statements the set of spin

central charge ¢ = §, and is the simplest exauple of a theory with: tfuctures on X means not the set $(X;L) of §7, but rather its
R ’ ?

non-integral c. otient by Aut(l).)

For an oriented circle S with a spin structure L the space 04

th

. In the Mdbius case we observe that E(X;L) is the Pfaffian line of
of sections of L¥ belongs to the category 'U’ggl . It is even or

hich is the square-root of the determinant line of the $-operator

according as L is Mébius ox trivial. A label for the circle S con L. This explains vhy the theory has c = }

i d
of L together with an jrreducible graded module for the Cclifford The Verlinde slgebra generated by the three labels A%,P is

algebra of ﬂ*(S;L). To an oriented 1-manifold S = §, 4 ... 1 Sk

the circle Sy is labelled (Li'Ai)' the theory assigns the Hilbert:

A=A ©...0 4. For a surface X with 3X = S we consider all 8.'p at el
structures L on X which reduce to L = uL; on S. We define the mit (4 = 1
functor b

unctor by p? o &% 4 A
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Definition (9.1). A primary field of type (p,q) 1is a vector ¢ e H such

that

§9. Field operatoxs

Primary fields U(E)y = £ (OPE ()Y

We shall now describe how to reconstruct some of the usual " for all £ ¢ \30-

formalism of quantum fleld theory from a functor of the type we are

studying. Thus we begin from a vector space H, and have an operator The reason for the terminology is the following. Suppose that X

UX ¢ is a Riemann surface with m incoming and n outgoing boundary circles.

£ € De%{. We suppose that

: H®m 3 H®n when X is a Riemarm surface with 3X = Cn-— Cm' and -

We suppose an element £ ¢ Dety has been chogen, but we shall suppress

it from the notation. Then for each primary field y of type (p,q)

-tc, -ic
Uy N by Ly R UX ;e .there is an operator-valued (p,q) form ¢X(z)dzpd2q on X with values in
1 H]
3 H@n'

‘the trace-class operators H@ﬂ To define yy, choose a

whhere (°L’°R) is the central charge.' holomorphic embedding £ : D -» X with centre z ¢ X, Because

* -
X, =X = £() is a moxphism G ; - C, it induces sz ¥ gn » n®,

- and |/:X(z) is defined by ¢x(z) £ - Ux (¢ ® ¥). The condition of (9.1)
z

First, the morphism G, = G, defined by the standard unit disc

and the canonical element ep ¢ Detp glves us amap € - H, or

"implies that \&x(z)dzpd-z'q is a well-defined differential form on the

equivalently a vectox ¢ H. This is the yacuum vectoxr.

The complex semigroup & acts projectively on H. The semigroup . interior of X. (It probably always has a distributional extension to

of holomorphic embeddings £ : D = D such that £(0) = 0 is a sub- - the cloged surface.)

semigroup of W over which the central extemsion is canonically split One can also define multipoint fields. If ¢ ,... ¥y are érimary

for the standar'd element ep ¢ Detg 1s characterized by epeg = €p. It “-“fields of types (pj,qq) then there is a differential foxm. (¥, ... Y1)y,

therefore makes sense to look for eigenvectors of '6 o In H. The

possible homomorphisms io » CX are given by £ v> £1(0)PE (07T wi

R such th z oL ok g, ! 7k
P,q ¢ R suc at p-q € 4. ¢1(51) ‘l'k(zk)dzl dzk dz1 dzk ’
defined on the manifold
°% , B
{ (z,,...,2) ¢ X ziyﬁzj if 1 £ 3 )

“The discussion applies with little change to a weakly conformal the
based on a modular fumctor with index set & rather than on the
determinant line. The vacuum vector and the energy-momentum tensor !
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d d -
i (z) = (L) (2) , i Se Yo(z) = (L) (2) .
with values in the operators > g®. 1t is defined by P ¥ 'I'X 17X az 'y 1

make sense and are valid, where L, and T..', are the usual Virasoro

W, ,._wk)x.z-ux.(E@!lf,@---@'I'k) ) . 10
operators on H representing the vector field id/dz = e’ d/dé in the

‘left- and right-hand actions of Vect(S') on H. These formulae can be
where now X' is obtained from X by removing k discs around the point .

‘regarded as' an infinitesimal version of (9.2). They hold because

Z,y.-- 1%k 1f ¢1 - ., = ‘l'k then the operator 1is symmetric with

respect to permuting z,,..-:Zk (or skew-symmetric if the theory is mo _
3 ide = UX o(leZ + ildz)

2 graded). " -

In particular, in a holomorphic theory each primary field ¢ gives
By their comstruction the operator-valued differential forms ¥y

ise to a holomorphic operator-valued differential form Yy, and even if
have the following naturality property, which is usually referred ¢

. is not primary ¢y is a holomorphic function in the domain of a given
the Ward idemtity. I£Y¥Y =2, o XoZ,1sa union of suxfaces then

ocal parameter. If X = X 1s the anmulus {(z @ a ¢ lz] < b} and ¥ is

'I'le - Uz o ¢X R UZ , ( £ type (p,0) we can always write yy as a Laurent series

1 0

- k-p ;&P
We also have, for example, ¥y = Uy (k§2 ‘l’kz 4=} U4 » (9.3)

(\Iq R P W’k»H ‘l‘m)Y -, .- ‘I’m)xﬂl where nﬁk is an unbounded operator im H and U, and U, are the
operators associated to the anmuli X,, and X . The advantage of this
when the surfaces X and Y are composable. {.‘°tati°n is that yy depends only on ¥ and not on a,b. The reader
thould be warned that in usual terminology it is the unbounded operator
One can go on and define secondary, tertiary,... fields: the : "szk.n which is called the field operator, rather than my ¢y. In
bigraded space H is filtered Hy ¢ H, ¢ ®, ... ¢ H, where H; is the mms of the Yy the Ward identity (9.2) becomes
primary fields, and ‘60 acts scalarly on Hk/ﬂk_‘ for each k, In faﬂ
any vector ¢ € H gives rise to an operator-valued function on any [Lgidp] = ~i(k + 0 - Py, - (9.4)
surface; but when we use the motation »[zx(z) we must beware that i .
th

an r-ary field then yy(z) depends not only on z but also on the /It ‘a holomorphic theory the operators yj are completely characterized

order jet of a local coordinate at z. Thus for any surface X and ‘Fof | terms of ¢ ¢ H by the property (9.4) together with

any ¢ ¢ H the formulae
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. (9.5 necessarily the complex conjugate of T.) 1In terms of the Virasoxe
IR y P

generators we have T = iL,{ and T = -iL, 0. To obtain the transformation

properties of T end T under & , ve must notice that the map V + H is

cum tensox not '&u-equivariant. Because Vect(S!) acts projectively on H we

The_energy-momentum Zens=>

actually have an 'Eu-aquivariant map C@V - H, vhere C is that of

Th t important fields in any theory are the energy-momentum the central extension of Vect(S'). Taking this into account we find
e MoS

tensors T and T. ‘These are secondary fields of type (2,0) and (0,2) that T transforms by (9.6). (See {31 ( )

respectively: T transforms under 80 by On a Riemann surface X the vector T gives rise mot to an operator-
valued quadratic differential T(z)dzz, but rather to a projective

Ug.T = £1(0)*T + cRSf(O)Sl , (9 connection, i.e. when the local parameter is changed from z to { the
operatox T(z)dz? becomes

where §g(0) = £''(0)/£'(0) - 3/2(€1(0)/£' (0))? is the Schwarzian

. : 2
derivative of £, and cp is the central charge. Tt should be noticed T()AE? + cgSely
that

where Sp is the Schwarzian derivative of the change of parameters.

£ ¢ 5g(®
£f >

0 1 The significance of the energy-momentum tensoxr is that it

describes the variation of the operator Uy : H®m > H@n assaciated to
is the omly two dimensional representation of “&0 which combines thi a surface X when the complex structure of X is changed. An

one dimensional representations £ £ (0)? and £¥> 1. infinitesimal change of structure corresponds (see (4.1)) to an

To define T and T we comsider the variation of the vacuum ma

element of Vecty(dX) /Vecr(X).
U, : € = H when the complex structure on the disc D is changed.

infinitesimal change of structure is an element of Proposition (9.7). (i) The enexgy-momentum tensor T(z)dz? is a
1!

v = Ve ctm(sl) /Vect(D), so the variation is amap V = H which is _ holomorphic projective commection on the interior of any surface. It

R-linear (but not C-1inear unless the theory is holomorphic). W

possesses a distributional boundary value. Similarly, T(z)d'z-2 is

regard it as a C-linear map V 6 ¥ 5 H. InV there is an eigenveil: antiholomorphic.

£ ‘¢ of type 2,0 represented by 2" 'd/dz. The image of this 1 (i1) For the infinitesimal deformatiom of X defined by a complex
Q 0 T

denoted by T, and the image of the corresponding element of T b vector field ¢ along dX we have
)

use the traditional notation T,T with misgivings, 8s T is mot
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s, = ]’ £(z).T(z)dz + [H‘Tz JT(z)dZ .
54 >

Remark. If T(z)dz? were a quadratic differential it would pair with
the vector. field £ to give a 1-form which could be integrated around
3%X. But ¢ is really an element of the central extemsion of Vectm(bx),
for it represents a deformation of a surface equipped with a chosen :
point in its determinant 1ine. Thus { pairs with a projective

connection, foF the projective connections are precisely the dugl of
the central extension of Vect(dX). ([S?.‘] (p.‘b:);‘).) 1f f extends

holomorphically over X the integrals ab:::g;:nish-by Cauchy's theorem
because T (resp. T) is holomorphic (resp. antiholomozphic). :
Conversely, the fact that &ly = 0 when ¢ extends holomerphically, 1.¢

the fact that the theory is conformally invariant, implies that T is?

holomorphic.

Proof of (9.7). Consider the variation of Uy in the space E of
trace-class operators ol H® vhen the structure of X is changed:

This is expressed by a real-linear map
Vectm(a}{) [Vect(X) = E (

when a section of the central extension of Vectm(bx) has been chosen:
The dual of Vectp(3X) /Vect(X) is the space Q of holomorphic quadrati
differentials on X with distributional bout{dary values. So (9.8)
corresponds to an element of E g @ = Egg (U@ 7). This means that

have a formula

sy = [ (kg + FEp)
3%

- where the factors § occur in the 18 ana jth
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for some naturally defined operatox-valued objects tx,'t_:'x. Applying
(9.9) wvhen X = D and £ = z”'d/dz we find that tp(0) = Tp(0) and
tp(0) = Tp(0). We then deduce that ty(z) = Tx(z) and Ex(z) = Ty(z) in

all cases by using the naturality property (9.2).

Corellary (8.10). If X is an amnulus {z : a ¢ |z| < 1) we can write the

energy-momentum tensor in texrms of the Virasero generators:

k-
T(z) = 1i{ £ =z L]) U, .
keZ T X

Infinitesimal automoxphisms

An important role of field operators is to describe the
infinitesimal automorphisms aund deformations of a theory. Aan
automorphism of a theory based on a vector space H evidently means an

invertible operator A : H - H which preserves the hermitian form and

satisfies
A%, up = Uy o AP

for each morphism X from Cp, to G, in ‘6 . An infinitesimal automorphism

) is accordingly a (demsely defined) skew-hermitian operator § im H such

that

n m

(£ 19...88@...81) e Ug=Ug o {Z 10...068@...81)
1~1 j=1

(2.11)

places on the left and

right.
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Proposition (9.12) In a holomorphic theory a real primary field ¢ of For the rest of the discussion of infinitesimal automorphisms I

type (1,0) defines an infinitesimal automorphism by whose domain of shall confine myself to holomorphlc theories. The infinitesimal

definition includes UyH for any snnulus X, and which is characterized automorphisms evidently form a Lie algebxa, and there is an induced Lie

b algebra structure on the finite dimensional space of primary fields of
y

type (1,.0), for if ¥, and ¥, are guch fields then

5. 0 Ty = | yglz)az (9.13) .
g% - | &
['ﬁ '¢]"'5 \l’ .
¥ 1'¥2 v, %2

where 7y is any simply closed curve going once around the annulus.

Proposition (9.14). Let ﬁ be the Lie algebra of real primary fields
Proof: The right-hand side is independent of 7 because Yyg(z)dz is a

of type (1,0) in a unitary holomozphic theory. Then the loop algebra L
holomoxrphic l-form, and the formula (9.2) shows that 6“, is independent 9

‘acts projectively on H, intertwining with the action of pifft(s™).
of X and satisfles (9.11).

Conversely, 1f Lo acts in this way then 9 is contained in the Lie

algebra of primary fields of type (1,0).
In a theoxry which is mnot chiral the 1-form wx(z)dz defined by a

primary field of type (1,0) need mot be closed, i.e. holomorphic. In

. . Remark. Because we are assuming the hermitian form on H is positive-
that case an infinitesimal automorphism is defined by a pair of real —_

= definite will be the Lie algebra of a compact group.
primary Fields (yg¥g) of types (0,1) and (1,0) such that Lyp = I g 9

Then the 1l-form n[zL(z)dE + 1];R(z)dz is closed, and its integral replaces’
: One consequence of Proposition (9.14) is that the fleld theories

the right-hand side of (9.13).

we shall comstruct in $11 fxrom the loop groups of compact groups are

genuinely different from ome another. The proposition also gives a
In the literature it is assumed that any infinitesimal . ¢

: convenient criterion for deciding when the group of automorphisms of a
automorphism of a field theory is given by a primary field in the v&

theory is finite: there must be no primary fields of type (1,0). But
described. This may well Eollow from our axioms; if it does not the »

. = the most important positive application of the proposition is the
another axiom should probably be added to emsure it. The idea of suc"f\

. . wyertex-operator" construction of the basic representation of the loop
an axiom would be to express the fact that the space H associated to

oup LG when G 1s simply laced: we shall return t this 1 12.
circle is, in some sense which I do not knmow how to make precise, a group PLy a o this in §

continuous tensox product of spaces associated to the infinitesimal

elements of the circle.
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Proposition (9.14) is deduced by one of the very characteristic
arguments of conformal field theory from the following “operator-

product expansion”.

Proposition (9.15). If ¥y and y, are primary fields of type (1,0) in a

unitary holomorphic field theory then on any Riemann surface X we have :

Uyt = Gy VP ER + grpliyd] xijf-f v ez

vhere ¢ is holomorphic e\;erywhere on X X X, for some invariant inner

product < , > on the primary fields.

Proof of (9.14) using (9.15). Let ¥yre ¥y be a basis for g . We

shall restrict ourselves to real analytic elements £ = X Ei"’i of the
loop algebra L& . Then $ is the boundary value of a holomoxrphic
function § defined in an annulus X, and we can define the action GE of.

£ on H by the formula

5" Ug = [ T Eghy y22dm
T
analogous to (9.13). Using the basic functoriality property (9.2) w

can write the commutatoxr (as,.s"] o Uy in the form

fl aaf ar-[ o] ar}():£i<z>nj(r)<wi¢j)x<z,r))
n o n 3 T

where v,,v,.,Y, are three hon-intersecting simple closed curves going

once round the ammulus, with y, outside 7, and v, outside y,. Let us’
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first perform the integral over z, holding ¢ fixed. B.ecause the
integrand is holomorphic for z # { and v, - v, is homologous to a small
circle around [ the result is the residue of the integrand at z = §,

which by (2.15) is

z Ei(")ﬂj(nwiﬂ/'j]x(f) + I <‘/’1:¢j>5i(r)ﬂj(0Ux .
Integrating this around 7y, gives
(ogady) = Bpg,q) + cEmi

where

ett,m) = [ <& (D) (nar
is a cocycle defining a centzral extension of L¢}.
Proof of (9.15). Fixst observe that the terms on the right-hand side
of (9.16) make invariant semse, e.g. that the 2-form dzdf/(z-1)? on
X X X is independent of the local parameter modulo holomorphic forms.

Because of this we can assume that X is the standard disc D, and that

¢ = 0. The element (\b,n]/z)n(z,O) of H can be expanded
W 9,) (2,00 = 3 az" (9.17
172 D keZ B )

with Ay ¢ H. Let Ry denote the automorphism of D which rotates it

through a. Its action on (¢1¢2)D(z,0) is given by
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Ryl (§,¥,)p(z, 0} = o2y v )p(e 1%,0) .

applying this to (9.17) we find that Rohy = (2K oy | 1 o, that & is:

an element of H of degree 2-k. In a unitary theory there are mo fields

of negative degree, and only the vacuum vector has degree 0. So
(¥,¥,)p(z,0) = Az~ 2 + A1z" + (holomorphic) ,
for some A ¢ C. But by definition we have

Lw,;p,)D(z,m -t ¥

) - [11’11‘#-2] )

so 2wxiA, = (¥,.¥,). The proof is completed by observing that

(9> 2 is necessarily an invarisnt immer product on 9.

Infinitesimal deformations

When one has a continuously varying family of conformal field
theories one may as well assume that the hermitian vectoxr space H i
fixed and that all the variatiom takes place in the operators Uy
associated to surfaces X. It is simplest to think in terms of
pefinition (4.4). Then an infinitesimal deformation will be a rule

which associates to each sucface X a vector Oy € HBX such that

(1) Oyuy =~ 9% © Oy + U 8 8y .
and

(i) ey v 54 for each sewing map X = X.
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In analogy with (9.12) we have

Proposition (9.18). In any theory a primary field ¢ of type (1,1)

defines an infinitesimal deformation by the formula

oy = [x 8 (2)dzadZ .

As with automorphisms it is usually assumed that any infinitesimal
deformation arises from a primary field in this way, but I do mnot know
a proof. Thus a chiral theory should be automatically rigid. The
space of deformatioms of the g-model of a torus will Se considered in

§10.

Examples

We shall consider some fields in the holomorphic fermionic

theories (O™ .
(i) The most obvious primary fields are the vectors
P m g A gy A¥megey A e € B

Evidently v$9) i¢ the vacuum vector £, with degree 0. In gemeral (™
has degree jim(m-2a:#l), which is negative 1f m is between 0 and 2w-1.
These are exactly the filelds ¢(m) which were described in a different
way in (8.20).. That is obvious in the case of v$) = ¢ from the
characterization of ¥y by means of (9.4) and (9.5); wve shall not pursue

the general case here.
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(ii) We saw in §8 that the theory 3(9}) is Z-graded' . This means:

that the circle group T acts on it as a group of automorphisms. The

infinltesimal generator is the primary field
J = \Pi_ A |ll_3/2 A ""5/2 A L.,
il

in %(Q*(SA)), vhich is called the gurrent. (In the second expressio

for J we write "% for the operator of multiplication by 1113 on ,3‘(25-)@5
ﬁ: for the amtiderivation corresponding to the dual basis elementll.) p
The field J provides us with an actiom of the whole loop group IV on :
. ‘3(95) extending the actiom of T . (In physical langusge the grading ¢
"lI'-éction is the charge, and the ection of the "current group™ LT

expresses the fact that charge is local.) To prove that the vector J
really does generate the T -action on '3(9*) one can write the field

J(z)dz on an ammulus in the form (9.3).

For J as above we have on the annulus

Proposition (9.19).
X={z: a¢ |z] ¢1) the relation

I(z)dz = (L Jyz¥ ldz) ° Uy ,
where

Je= 5 Ve VR when k # 0 ,

reZ+i
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and

J. - VY% — Yy .
0 r§0 rr rgo r'l'r

One must check that the expressions for the Jy given here axe
well-defined operators on vectors of finite emergy in H. Granting
that, the proposition is easily proved by checking the conditions (9.4)
and (9.5), using ['Ih'\l’m] w cl(m + )P . The operator J, 1is by
definition the infinitesimal automorphism 53 of H corresponding to J,
and it obviously multiplies each basis vector of H by its Fock space

degree.,

(1ii) In ’3(9“) for any value of « there is a vector J = 2
of degree 1 analogous to the current in '3'(9.5). When o # % it is not
a primary field, foxr

L ,J = 1(1-200 .

This means that under the sction of a holomorphic map £ : D » D such

that £(0) = O the vector J transforms by
Ug.J = £'(0)F —~ $(L-20) £"(0)£1¢0) " 'Q
(cf. (9.6)), or equivalently that we have an operator-valued 1-form

J(z)dz in each coordinate patch on any surface X, but when one changes

coordinates by z = z({) the form changes to
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J(z())z'(Hay - $(1-20) Ux(z“(!’)/z' ($al . We can suppose the connection 7y arese from a trivialization of TX.

Then I y(z)dz is the angle by which the tamgent vector d/dz to 3X
>4

We can still write J(z)dz'in the form (9.19), and the operater J, in H rotates relative to the trivialization when one travels around 3X.

defines the Fock space degree, which is still called "charge". But the This angle is 4x(g + m - 1), where g is the genus of X and m the number
fact that J(z)dz is not a 1-form corresponds to the failure of the of boundary circles. So the chaxge anomaly is (20-1)(g + m - 1), in
operatoxs Uy to preserve charge which. was pointed out in (8.13). From agreement with (8.12).
the present viewpoint the charge anomaly can be calculated as follows.
Let us suppose that all the boundary circles of X are outgoing. We cafi BRST cohomology
choose a holomorphic comnection in the holomorphic tangent bundle to X
1t is given by a 1-form y(z)dz in each coordinate patch, but a change : For a holomorphic theory H with central charge 26 we define the
of coordinates z = z(!) replaces y(z)dz by ’ BRST cohomology in-the following way. First tensoxr the theory H with

_ the “ghost" theory ™4(0%). The Fock space grading of 3(9%), which was
-y(z(!‘))z‘(!‘)d!’ + (z (32t (E)aY . called the "charge" in the preceding example, induces a grading of
H=H@® 3(0?) which is now called the "ghost number". We shall show
Then that H contains a primary field Q of degree 1 whose associated
infinitesim'al automorphism 6Q raises the ghost number by 1 and
J(z) + 5(1-2a)'y(z)Ux)d‘;. satisfies ﬁé w 0. The cohomology of H with respect to the differential
5q 1s the BRST cohomology Hgpgy- Now the Fock space %(q*(s")) is a

is a global holomorphic 1-form on X with values in H(3X). Applying £ yenormalized version of the exterior algebra om Q2(5'), which is the
operator J, to Uy € H(3X) glves, by definition, dual of the Lie algebra of vector fields Vect(S') ~ 2°7(s"). The

differential 5Q is similarly, as we shall see, 2 renormalization of the

1 -1
=1 [ Iz tdz .

3X

standard differential of Lie algebra cohomology, aud so HBRST(S‘) is a
renormalized version of the cohomology of Vect(5') with coefficients in
By Cauchy's thearem this equals the module H(S'). In fact ome can say more: for H(52(s")) 1is a module
over the exterior algebra on Q2(s'), and this makes Hppgp(S') a module

1
7= (2a-1).j' ¥(2)dz)0y -
3K

over the ordinary cohomology of Vect(S') with coefficients in L.
At the moment, however, I want just to point out the field-
‘ theoretic aspects of Hppgp. Because 5Q is an infinitesimal

automorphism the operator Uy assoclated to a surface X in the theory H
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commutes with "Q' i.e, it is a homomorphism of cochain complexes. It
induces a map of the cohomology Hppgy which changes the degree by the
ghost number anomaly. This is still not quite what we need. The

surfaces X of a particular topological type a with m incoming and n
outgoing circles form the moduli space \@u of §4 whose tangent space
X is Vectc(bx) /Vect(X). The operatoxr Uy isl‘really an element of

ﬁ(bX) - H(X) @ B(Q%(3X)), which is a module over the exterior algeb

on Vectc(b}ﬁ), the dual space of Q%(5X). The vector UX is anmihilated

by the subspace Vect(X) of Vectc(aX). We can therefore define for eac

‘P a holomorphic differential form ap of degree p on g o With values

A
H(dX), by
Wp(E - fp) =8k, o BTy s

where E:I. € Vectc(a}(). The fact that aQUX = 0 - because 6Q is an

infinitesimal automorphism - has the following generalization.

Proposition (9.20). We have

d(l’p_.l - "6Q(l) s
where d denotes the exterior derivative of forms on ‘@ o

Alternatively expressed, 1f the boundary circles of X are regarded
incoming rather than outgoing, -the forms (wp) define a map of cochdin

complexes

HOD » B8y ¢
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Proof: An element { ¢ Vect (3X) acts on H in two ways: by the exterior
multiplication used above, and also by its action as an element of the
Lie algebra of Diff(3X). I shall write Ly for the latter action, and
(for this proof) if for the former. The two are related by the usual

Cartan and naturality formulae

Iy = [og:3g) » ipg 41 = [Lgyi,,}

‘where { , ] is the graded commutator.

I shall give the proof of (9.20) when p = 2. We have

do, (X35, 1) = Lo, (X38) ~ Lo, R + o, (X5 [&,7])

(yly = Lely + dgg 9120

(Lyiy = 11Uy
- b, (X;E,m)

e first line of this calculation is the definition of the exterior

érivative, regarding £ and 3 as vector fields on ‘go:' One can identify
A

the Lie derivative LE for forms on ‘& a with the operator LE on H

ecause X+ Uy is equivariant with respect to the action of Vect:c(bx).

Let us now suppose that X is a surface with m boundary circles,
11 incoming. We readily check that the cochain map (9.21) raises
dgree by 3g-3, vhere g is the genus of X. It is also compatible with

t'fte action of Vect d_'(bX) ~ by both kinds of operators Lf and if;. The
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action of Vectc(b}{) is the infinitesimal version of the natural action

of ¥, @ ... @ ¥y, under the map (9.21) is a top dimensional holomoxrphic
of the semlgroup A", Inside & there is the subsemigroup ‘8, of

o . \g n form on mg,m' well defined up to the addition of an exact form. For
holomorphic embeddings £ : D - D. The quotlient space of Ly by @, is:

this reason the elements of ghost number 1 in HBRS’J.‘ ars regarded as
the modull space M of closed surfaces of genus g, and has complex

g (chiral) "physical states”.
dimension 3g-3. Now the vacuum vector in H(3X) is basic for g}“ (i.e

annihilated by LE and if for ¢ e Vect(D)). 1Its image under (9.21) is K

We now return to the definition of the primary field Q and the
therefore a form on ‘@a/ &m = 'mg which is holomorphic, and of the tap

verification of its properties. We can write it explicitly
dimension 3g-3. It is natural to call this the partition foxm of the

chiral theory H. A more physical theory in which both chiralities wer

Q = Jey. 2 + Q6 (Y. 9%, - W)L (9.22)
present would have a partition form of bidegree~(3g-3,3g-3), and this?

could be integrated over mg‘ That is the situation in string theory.

N
-inH=H® J(Q?. As the energies in ¥(0?) are bounded below by -1
Besides the vacuum vector we can consider other classes in :

o we need only check that L .Q =1L _,Q = 0 to see that Q is primary, amd
Hpp gp(3%) = HBRST(S‘) ™ por the theories which arise in practice all

A that is easily done by using the relation
elements of HBRST(S‘) are represented by elements of H(S') which are

basic for the action of the semigroup
[Ly,¥g) = =1(m+2K)¥,
m+k

ﬁo=(fe£ : £(0) =0} .

of (8.14), together with the formula L_,T = 130 in H which expresses
that H has central charge ¢ = 26, To understand where (9.22) comes
(This is true whenever H(S") is a free module ovexr the emveloping

from, however, it is best to recall the formula for the differential &
algebra U(ot) of the Lie algebra of of 80, which is spammed by the

in the cochain complex M @ /\ﬂ* of a Lie algebra 9 with coefficients
Virasoro generators (Lglpy,- Cf. [F6Z].) The quotient space ¢ o 8.’3

in a g)-module M. Let (Ek) be a basis for 5 . and {og]) f:he dual

is the moduli space m m °F surfaces with m marked points. 1t has %
8 basis of 9. Then

complex dimension 3g-3+m. 1f we choose an element y; of ghost numbez
in HBRST(S') for each boundary cixcle then the image
8 = LE B + 3210 ek
b, oo Vo
._whare ey is the operation of multiplication by oy on /\%*, and §;

.denotes the-action of ) on either M or Ag*. The analogous operator

A
“on H=H@® (0, in the usual notatiom, is
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§10. The o-model for a torus

- + 1@ -k +i‘z 1@L_k\b‘kx
5q kEG:Z e ® 9.k t k§-l & k<-1

(9.23)

where we have renormalized by tadding the infinite term" The Hilbert space

3 ¥ 18 [Lgdl = (2 kg 1 k)¢, We shall now construct the field theory corresponding to strings
k<-1 -
moving in a torus T, As was explained in the introduction, the

In the light of (9.23) one finds, afte essential point is to choose a vector space to play the role of the

to ensure that 6Q(ﬂ @ = 0.

a little experiment, that the sequence of operatoxs space of square-summable functions on LT. If A is a locally compact

‘abelian group there is a simple group-theoretic characterization of the

Q = ¥ Ly ®¥x * 3% kz L L @ ¥yl gam Hilbert space H = LZ(A), and our strategy is to adopt this characteri-
keZ -

zation as a definition in the case of LT.

+ 3 5 1@Lgygh * 32 m(m+1) ¥ In the finite dimensional case L?(A) possesses a unitary sction of

k<-1 "
‘A by translations and a unitary action of the Pontrjagin dual group A

satisfies the relations [Lp,Qm] = -im Qpqp of (9.4) as well as Q; = by multiplication operators. These actions fit together to define an

Finally, we obtain the expression (9.22) by setting irreducible unitary representation of the Heisenberg group (A X A)",

;which is the central extemsion of A X A by T assoclated with the

Q = e . ;palring A X A -» T, i.e. the extension whose cocycle ¢ is given by

c((a,,a),(a,,a,)) = <o, ,a,> . (10.1)

To conclude we meed to know that &y yaises the ghost number b

and also that 5(22 = 0. The first is obvious from (9.23). The second : ‘The space L¥(A) is characterized - up to a scalar multiplication - as

is equivalent to §Q = 0, for 5& is the graded commutator ”Q’ BQ]' he unique faithful irreducible representation of the Heisenberg group.

To generalize this, let us begin with a Riemanmian torus T = ¥/A,

One knows a priori that 66 is an infinitesimal automorphism of the

theory, but I do not know a non-computational proof that it vanish ‘where & is a finite dimensional real vector space with a positive inner

roduct, and A is a lattice in . The dual lattice
M= (E e <E,p> el for all 7 ¢ A)

ives rise to the dual torus T¥ = $/A%,
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The loop groups LT and LT* are in duality under the bilinear

(1iii) If 1 is an abelian Lie group with a skew pairing

pairing << , >>: LT X LT* - T defined by c: XM » T, and x () and = ([} are finitely generated, then a

L polarization of II is a polarization of its Ldie algebra Lie(ll).

whp> = b [ (<Edp - <P+ HCEO) A2 - <d;,8(0)>), (10.2)

Q In our case Il = LT X LT*, and

vhere T 1s regarded as R/Z, and an element £ of LT is regarded as a m

£ :R » % satisfying IT ~TXAXV

LT* = T% X A% XV,
£(e + 1) = £() + Af

where V is the real. vector space (I4)/%. A polarization of II is the

for some Ag ¢ A. - (Thus £ is defined only modulo the addition of a same as a polarization of V @ V, and this space has a canonical

constant element of A.) The pairing << , >> is mondegensrate, and :l polarization given by the decomposition Vy = Vg @ Vg inmto positive and

invarisnt undexr piff*(s'). The groups LT and LT¥ are thus essentially negative frequency, This gives us a definite irreducible unitary

Pontrjagin duals of each other. g representation of 1l on the Rilbert space

We can now define a Hilbert space H which is a faithful

jrreducible representation of the Heisenberg group fi formed from H=L%T XA @ S(VE ® v’é')

M = LT X LT#* by using the pairing << , >>. Because Il is infinite

dimensional it has many faithful jrreducible representations. To

gingle one out one must choose a positive polarization of i, Remark.

A positive polarization of V @ V is the same thing as a

guadratic form q : V » € such that Im q is positive definite. 1In the

Definition (10.3). (i) A polarization of a real vector space E W present case q(f) = 1 Zn<a__,a> if £ =L aneino. One can identify

skew form S is an equivalence class of operators J:E 5 Esuch S(VE P VE) with a completion of the space of all functions on V of the

(a) S(JE IJ.',) - S(E ."7), and form £ > p(f)eiq(f)r where P V » Cis a POl)'“omial, so it is a

(b) J% = -1 module trace class operators. very natural candidate for LI(V).

Two such operators J are equivalent if their difference is of tréce

class. Because DLf£T(S') acts on i by automorphisms, and preserves the

(ii) A polarization J is positive if the quadratic form polarization class, it acts on the irreducible representation H. (In

t v> S(£,JE) is positive-definite on a subspace of E of finite principle the action could be projective, but in fact is not.)

codimension. Orientation-reversing diffeomorphisms of §' reverse the polarization of
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I, so they give amtiunitary maps H > H. We have therefore the data

S(WL) I} S(WR), where Wiy, and WR are the diagonal and antidiagonal

to assign a Hilbert space Hyy to the boundary of any Riemann surface X. +
X subspaces of VE ® VC' Then the left- and right-hand copies of U act

To complete the comstruction of a conformal field theory we must
p Y purely on the left- and right-hand factors S(W;) and S(Wgp). On each

i to X ¢ in Hyy, d check the conditions (4.4) - but in
associate to a ray ﬂx T Hyxe an ec ( ) the representation is the standard metaplectic representation of U

fact Oy will be defined in a way which makes. the conditions manifest. described, for example, in [52]. We thus obtain

Before turning to these rays it is worth describing the actiom of

the conformal group Counf s' x R) on B. We recall from §3 that this .
group ( Proposition (10.4). (i) The representation of Conf(S' X R) on H has

i £ pieet(s') x pifft(s'), and that th
group is a covering group O 9 L (59 a e central charge (d,d), where d is the dimension of T.

atural eometr.:ic action of DLffT(58') is diagonal with respect to this : . i
n & ) B v ; (ii) The partition function of the theory, i.e. the trace of the

description. Lgt'b'denoce the simply commected covering group of action on H of the standard anmulus A_, is

pifft(8"), 1.e. the diffeomorphisms p : R =+ R such that
0 + 2x) = p(8) + 2z, The group conf(8' X R) is a quotient of I'P(Q)lm T qill’\"‘lxllz aill)\'#llz

¥ x U, and the latter acts on Il by Nop

vhere p(q) = M(1-¢™) .
(9, p) " (£,8) = H(pH(EHE) + PE(E-B), ¥, (E¥E) = ¥ (E-8)) .

The ray associlated to a surface

The representation H of II is {nduced from the representation of its

. + .
identity compoment II, on Ho, o S(VC ® VE). Under I, it breaks up The general method of prescribing a ray in the Heisemberg

representation of Il is to give a maximal isotropic subgroup P of Il and
H o= H ] P

@ Mo a suitable character § : P + O~ which gplits the central
extension of P induced by ITE' The ray is then the eigaﬁvector of P

where (\, runs throu the group of compoments A X A¥, and
#) gh group P s corresponding to the character #: it exists and is unique providing P

H - H as a representation of V x V c II but is acted on by T X
A, p 0,0 P 0 y is positive and compatible with the polarization of Il in the following

via the character (\,p). The summands H are acted on separately b,
A p P 4 sense.

% x ¥: the action on H)\'F is obtained by twisting the actien on Ho,o b

the crossed homomorphism €, , @ B x ¥ » M, associated to (A,p) e Il T Definition (10.5). (i) P is an isotropic subgroup of Iy if the induced

extension P is abelian.

see the action of ¥ x T on H, o we rewrite S(VE ® VE) as

(ii) P is positive if Im c(p,p) » 0 for all p ¢ P, and

Im c(p,p) > O except on a compact subgroup of P.
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(iii) P is compatible with the polarization of Il 1f the
endomoxrphism Jp of Lie (ﬂm) which is +1 (resp. -i) on Lig(P) (resp.

Lie(P)) belongs to the polarization class of M.

Remarks. (a) We write Im c(p,p) » 0 rather than ]c(ﬁ,p)[ { 1 because wé

are writing C* additively, l.e. as c/Z,
(b) A charactexr 0 : $ 5 Cf=C/Z is the same thing as a map

g : P o E/2 satisfying
8(p, + p,) = 8(p,) + 8(p;) + c(p,,P,) -
We require it to satisfy 20(p) = c(p,p).

We apply Definition (10.5) to the group be = Map(3X;T) X Map(3X;

We associate to the surface X the group
M
By = ((£,8) ¢ Map(X;'Im) xMap(X;Tm) : dg = *idaf} .

Elements of Py are determined by their restrictioms to 3%, so Py is
subgroup of Myy g. In studying the cocycle on Ilyy it is convenient to
construct X from a plane polygom Y with 4g + 3k sides, wherxe g is th
genus of X and k is the number of boundary circles. We shall label thi

sides of Y cyclically

a-, 1ﬁ| J'Y«l ’61 -ﬂ,.ﬁz,'r,xﬁz. e lag’ﬁgl'ygi 6gv)\1 :0'1 ;I‘, tee ")‘k'”k'“k' (10

and identify vy with o7', 8; with ', and py with A;'. Thus the side

¢y become the boundary of X.
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if (£,,g,) and (£,,85) belong to Py then we find

C((£1.8)) 1 (£ 8)) = -1 [ <dfy %afp> .
X
This is symmetric in (£, ,£,), so Py is isotropic. We also see that
there is a canonical choice for the character § satisfying (10.6),

namely

1
0g(E,g) = - 5 1 [<df,*db }
X

Similarly, if (f,_g) € Px then

c((E,8),(£,8) = 1 [<af,*&> ,
X

which shows that Py is positive. In fact we have

Proposition (10.8). Py is a positive maximal isotropic subgroup of

HBX,E’ and is compatible with the polarization.

Proof: (a) To show that Py is maximal isotropic we consider an element
(£,8) ¢ l'[bx.m which is in the commutant of Py, i.e. such that
<«<f,, > = <<g,, > for all (£,,5,) ¢ Py. In particular we can take

£, = ¢ 8 = -ip, where p is an arbitrary holomorphic function X - {g.
We find

I<p,dg-idt>-0.
X
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This shows that dg - idf is the boundary value of a holomoxphic
differential on X. Similarly, taking £, = 7. &, = lp we find that
dg + idf is the boundary value of an antiholomorphic differemtial.
putting the two facts together, there is a harmonic l-form o on X such
that df = w|2X, dg = *iw|3X. Llet F and G be indefinite integrals of w
and *iw defined on Y, andlsuch that F aprees with £ and G with g at one
vertex of dY. To complete the proof we must show that ui(F),ﬁi(F), and
o§(F) belong to A, and ay(6),6;(G), and o¥(C) belong to A%, where
ai(F) denotes I dF, etc., and m{(F) denotes the constant difference
%

between F and £ along ¢;. But if (£,,8,) € Py we calculate
<<f,, > - <<g, > =L (<cxi(f|),ﬁi(G)> - <ﬁi(fn)'°’i(c)> + <0'i(f,),¢r{((:)
- I (<oy(g,) B3 (F)> - <By(g,) i (F)> + <<Ti(g‘),0{(F)

Now (ui(f1),ﬁi(f1),di(f1)) describe the class of £, : X <« Tin
H'(X;A). The proof is therefore completed by the observation that the
group of components of Py is H (XA 0 R'(X;A*), a fact vhich follows
easily from the theorem that any element of H!'(X;$) can be represente
by ¥dp for some harmonic map ¢ : X > &

(b) The operator JPX in Map(bx;t) @ Map(2X;¥) which corresponds
Py is (£,g) »¥ (jxg,jxf). where jxf is defined by d(jxf) = *dF, whez
F : X » % is the unique ba;:monic extension of £. (Thus jx is
well-defined only up to the addition of a Finite rank operator.) For
the standard polarization jy is replaced by the Hilbert tran-sform. B

it is easy to check that jy differs from the Hilbert transform by a ;

smoothing operator on 3%, which is certainly of trace class.
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Generalized toral theories and their parameter space

The theory we have just constructed is manifestly symmetric with
respect to the tori T and T¥, i.e. dual tori gilve rise to the same
string theory. But we can say considerably more. The Hilbert space
was constxucted as a projective representation of the loop group IT of
the torus U =T X T¥. To define the cocycle (10.2) we did not meed to
identify the Lie algebra { with its dual: we used omnly the vector
space ¥4 = Tt @ {* with its natural indefinite inmer product, and also
the self-dual integral lattice £ = A @ A* in it'. To define the
polarization and the rays ﬂx, however, we did use the identification

{ - 1*: essentially we need an orthogonal transformation J of 4. such
that (i) J2 = 1 and (ii) <&,J&> 3 0, for the definition of the subgroup

Py can be written

Py = lp ¢ Map(X;Ug) : dp =~ ¥iJdp} .

We do not even need the immer product on 44 to have signature 0: it can
be positive definite, in which case we must have J = 1, so that Py is
simply the group of holomorphic maps X -+ Up. The fact that Py is
meximal isotropic is equivalent to the unimodularity of the lattice x,
but to have a canonical splitting of its central extemsion we need L to
be even (i.e. <\, A> e 2Z) in addition. A lattice of the form A @ A* is

automatically even. Let us recall, however, that an even unimodular
i siganlure

lattice can exist only itlp«; is divisible by 8. ([57] Chapter 5,

§2.2.)

Istrictly it is the commutator pairing (and hence the isomorphism class

of the extension). and not the cocycle which is defined by (44 ,%). The

cocyecle involves choosing an integral bilinear form B on t4 such that

<t,7> = B(£,n) + B(n,t). This exists only #£ the lattice is even.- The
s

canaral cara ie Aierncesd in |12
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) It is interesting to consider the family of toral theories in the
We now have a class of genmeralized toral theoxies parametrized by
; 1ight of their infinitesimal automoxphisms and deformations. From the
triples (#,L,J),, vwhere T is an even unimodular lattice in the real
. formula (cf. (10.4))

inner-product space M. 1f the immer product is indefiinite the pair

(4 ,5) 1s determined ([S7] Chapter 5, Th. 6) up to isomorphism by the _
' ()P = q

<a+,J0'+> E(U_ Jo >
oeL ’

dimension and signature of 4, say p + q and p - q. The automorphism

group of (i4,I) is the discrete orthogonal group l‘p’q = Q(L). The
: for the partition function we see that for a generic lattice (i.e. vhen

possible choices of J form the homogeneous space Op, q/op x Oq, so the : :
<o ,Jo > is never integral) the fields of types (1,0),(0,1), and (1,1)

parameter space of the theories is
: are contained in Hj and isomorphic to g, Uy and “Wre#g

respectively, and are all primary. Now “E ® UG =% is the

Mp,q = Tp,q\ %,q/ % %% -
: complexified Lie algebra of the torus U, which is the obvious group of

automorphisms of the theory. Similarly4 E ® M'TI‘: is the complexified
1f 4 is positive definite, however, the parameter space is the
tangent space of the parameter space Mp q vhich suggests that the
discrete set of classes of even unimodular lattices. ’
toral theories form a complete component of the modull space of all

The Hilbert space of the general toral theory breaks up H =® Hy
theories.
where o runs through the lattice L. As before we have

H, = S(Wy) @ 5(vR) under D x U, where now the left- and right-moving
Finally we should mention that when p = q = n the parameter space
parts are assoclated to the splitting tt = MY g 44~ into +1 and -1
Mn,n has as a covering space the moduli space of n-dimensional
eigenspaces of J. (Thus Wy, (resp. WR) is the positive- (xesp.
Riemannian tori T equipped with a tramslation-imvariant 2-form w. For
negative-) frequency part of LWG / ‘l-&c .) In particular the theory

. if we write U = T X T*, as is always possible, and write

has central charge (p,q), and is holomorphic if #4 is positive-
J:{ @ {*> {6 {¥asa2x?2matrix

definite. We shall discuss the positi\-re-definite case in more detail
in §12, without assuming that the lattice 1s unimodular. In gemexal
the splitting ¥ = %% @ 447 is irrational with respect to the lattice:
T, and this prevents us factorizing the theory as a whole into left-
and right-moving parts. When the splitting is rational the theory can

then ¢ : t -+ I* is a Riemannian metric on T and w = ca : 1 -+ I* is
be factorized as the product of a pair of weakly holomorphic theories

a skew 2-form. One can easily check that ¢ and w can be prescribed
based on a modular functor; this will be explained in §l3.

arbitrarily, and determine b and d. In fact the modull space of pairs
(T,w) is GLn(Z)\ Or;.,n / Oy % 0, where GLn(Z) is the subgroup of I'y

vhich presexrves the chosen decomposition I = A @ A%,
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the theory correspondin,
From the point of view of string theox;{ C] Ty P g §12. The loop group of a torus

to (T,w) is that of strings moving in a constant background field w: it
is obtained by replacing the usual action functional for a map The clzele
£: X5 T from a2 surface to T by

.

For the loop group of & torus one can describe the representations
S(E) = % f<df,*dt> + [ fra .

and the associated modular functors very explicitly., Let us begin with
X X

the loops in X -'in fact, to keep the functoriality as clear as

L £ £, and so
The term involving u depends only on the .homotopy class © ’ possible, let us begin with the group ﬂ.‘.)s( of smooth meps from an

tion. From this
does not affect the classical equations of motion m arbitrary compact oriented l-manifold to X,

i i 1 nces between the
standpoint, however, there are surprising equivalence We have already pointed out in §8 that C>s< acts by pointwise

i t that the tru
theories for different (T,w) coming from the fac a e e multiplication on the polsrized space Q*(sa) of }-forms on 5. Here o

parameter space is a quotient by I ,, rather than GL,(2). is a spin structure on S, i.e. a choice of a square-root of T*S, and
.Q,%(So.) denotes the sections of the complexification of ¢. This action
gives us a central extension l"_";' g °Ff C)s( by €%: an element of the
extended group is a pair (vy,¢) with v ¢ C>s( and € an element of
Det(W;4W) for some subspace W of ﬂi'(Sa.) belonging to the restricted
Grassmarmian. The extensions corresponding to different spin
structures are isomorphic, but not canounically.

The Heisenberg group E>S<,o' has a canonical irredut;ible representa-
tion Hs' o This can be realized (cf. [P5]Ch.9) on the space of
“holomorphic €-valued functions on C)S</P, where P is any suitable maximal
‘isotropic subgroup of C)s< (The realization depends on the choice of a
splitting of the induced extension F of P: for Hg & is the representa-
ion of Q’G holomorphically induced from the character P - e given by
he splitting.)

If X is a Riemann surface such that 3X = S then - as we shall
rove - the group Ci( of holomorphic maps X - Cx is a suitable maximal
sotropic subgroup of E>S< The natural way to define a splitting of the

xtension over l:;{( is to choose an spin structure gy on X compatible
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with ¢. Then the space W of holomorphic sections of oy belongs to the
restricted Grassmannian of ot (S,) and satisfies YW = W for all v ¢ i
so y+> (y.idgp) is a splitting.

At this point we have essentially defined a conformal field theory
based on the category ‘GSPin. For the realization of HS, g 8s
Hol(ﬂ:)s(/[%) gives us a canonical ray in HS, P consisting of the
constant functiouns - for each surface.X with 3X = §. And Hs, o has a
hermitian form, characterizéd by the property that the action of [:)S( is

_ "seuing"
unitary (in the sense that U(p)* = U(y)). The

property of
the theory is obvious from this point of view.

This bosonic construction of the theory described by means of Fock
spaces in §8 seems at first to have few advantages, for it entails
proving that E§ is a guitsble maximal isotropic subgroup of D§X; and in
any case the theory of Heisemberg representations is not so elementary
as that of Fock spaces. But the bosomic theory can be used in

situations where there is mo fermiomic version, and it gives more

information, as-we shall see.

A central extension A of an abelian group A by €* is determined up

to mon-canonical isomorphism by its commutator pairing
« ,>>:8xa » C

defined by <<a , a,>> = 51523;‘5;', whara ;i ¢ A is a 1ift of 2. The

commutator pairing of the extension of 1L that we are interested in is'

1
<<E, > = % I (Fdg - gdf) + L(E(OA, - A:8(0)) - (12.1)
0
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Here X is regarded as C/Z, and elements of 1CX as maps £ : R+ C such
that £(x + 1) = £(x) + Ag, vhere Ap € Z is the winding number. The
pairing << , >> is invariant under pifft(s?).

We can obtain a definite central extension of 1CX by giving a

cocycle ¢, which must satisfy
c(f,g) - c(g,f) = <£,> .

Unfortunately there is no choice of ¢ which is invariant under

piff*(s'), but the formula

1
o(£,8) = [ fdg - § Agg(0) (12.2)

0
defines an extension A of the group A of maps £ : R > C such that
f(x + 1) = £(x) + Af which is invariant under the umiversal covering
group of pifft(s?), i.e. the diffeomorphisms p of R satisfying
p(x + 1) = p(x) + 1. Of course 1C* = A/, so we get an extension of
1CX by lifting the inclusion Z » A to A. Because ¢ vanishes on Z X Z
the possible lifts simply correspond to homomorphisms 250X ie. to
elements ¢ ¢ £, It is easy to check that the double covering of
Diff*(5') acts on the extension corresponding to ¢ = 1, ¥hile pifft(s")
itself acts when o = -1, These are the two extensions which correspond
to the two spin structures on the circle. Using them we can assoclate
an extension ll‘?s(’ o °Ff IZ."S< to every orilented l-manifold with a spin
structure. In doing so it is important to notice the following point.

From (12.1) we find that
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<<f,?> - ¥ Ang

if £ and g have disjoint supports in s', in other words loops of

winding number 1 anticommute if they have disjoint supports. For a

discormected 1-manifold it is therefore appropriate to look for

extensions of E>s< whose commutator is given by

«<E,p> = T <f ,g>> + i S A A,
g iy 1 8L

where f;,g; are the restrictions of £,5 to the ith

component S; of §,

We therefore define ﬁx so that it contains each ifx as a subgroup,
5,0 Si,o'i

and satisfies

A
f.g = (-1) £ g.£

when £ ¢ T &

5.0y’ g € ~S gor 203 1 #J. The natural way to achieve
i 373

this is to use the cocycle
o(f,g) =S, (f,8) + + T AA (12.3
where c; is the cocycle defining % . Notice that this cocycle is
i
defined only on a covering group Ag of C>s<, and does not depend on the
spin structure o¢. The group E’g is obtained as the quotient group of Zis

by the image of a lift of the inclusion H(S;Z) » Ag, and the lift doe

depend on the spin structure.
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Proposition (12.4).

(i) For any Riemann surface X the subgroup Cxx is a positive maximal
isotropic subgroup of E’a(x, compatible with its polarizationm.

(11) When restricted to Cf < Cyx the cocyele (12.3) takes its values in
{0,%}, so defines a canonical extension Eﬁ g °f E;é by Z/2.

(i1ii) The extension Cxx, o splits, and its splittings correspond

canonically to the spin structures on X which restrict to ¢ on 3X.

Proof: This is similar to Proposition (10.7), and we shall use the
same notation. Suppose that two elements f,g of c)b(X are represented by
smooth maps £,g : ¥ » C, wvhere ¥ is the plane polygon with sides

Oy ooyl After some manipulation we find

clf,g) =~ EUE + t[deds. (12.5)

where ¥

EUg = T (og(£)B(g) - B Bley(m)) -

If £ and g are holomorphic then the intégral over Y vanishes, and if £
and g are well-defined on X then c(£f,g) ¢ 3Z and c(f,g) - c(g,f) € &.
So ij is isotropic. It is positive because if f is holomorphic then

In o(E.£) = %{Idf/\df)o.

Y
The proof that D;é is maximal isotropic and compatible with the
polarization is sufficiently like that of (10.7) to need no further

comment.
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Appendix B Determinant lines

This appendix preserves the conventions of Appendix A, and all
topological vector spaces are assumed to be allowable. An operator of

determinant class means one of the form 1 + T where T is of trace

class, and det(l + T) is defined by (A.12).

pefinition (B.1l). An operator T : E » F between complete locally

convex vector spaces ls Fredholm if it is {nvertible modulo compact

operators, or, equivalently, modulo operators of finite rank.

1f T is Fredholm chen it has closed range and finite dimensional
kernel and cokernel. If E and F are Fréchet the converse is also true.
(C£. [S1]) The index of a Fredholm operator T is the integer

.

dim(ker T) - dim(coker T).

Definition (B.2).

(1) IfT : E > F is Fredholm of index O then Dety is the line whose

points are palrs [0,\], where \ ¢ Cand 8§ : E » F differs from T by a

trace-class operator, subject to the equivalence relation generated by -

[0p,A] ~ [0,(detp).\]

when p : E » E is of determinant class,
(i1) I£T : B~ F is Fredholm of index mn themn DetT = Det¥, where

FaT@O0:E-F@C*ifn>0, andT-T@0:EQC"»>F if n<0.
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Remarks. 1If T has index O one can always choose an invertible ¢ such
that 0-T is of trace class. Then A\ +¥ [0,)\] defines an isomorphism

€ - Detq. 1f ¢ is not invertible them [6,\] = 0 for all A.

Definition (B.4). If T : E » F is Fredholm of index 0 then det(T) is

the element [T,1] of the line Detq. If index(T) # O then

det(T) = 0 ¢ Dety.

‘Corolla: B.5). T is invertible if and only if det(T) # 0.

Proposition (B.6). If dim(ker T) = p and dim(coker T) = q there is a

canonical isomorphism

Detp; = AP(ker T @ A%(coker T)
Proof: It is emough to prove this when p = q. Let “1""’“p be a
basis for (ker T)% and Tyreeallg be a basis for coker T. Let
@ : E»Cbe an extension of ;. Then
[T+Eqy @8 , L] e a Ao A o 81, A ATy

defines the isomorphism.

We shall mow show that the lines Detyp depend holomorphically on T,

Proposition (B.7). If {T, : E, Felxex is a holomorphic family of

Fredholm operators then the lines Det:T form a holomorphic line bundle
x

on X.
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Here the meaning of ‘holomexphic family' must be understood in the
sense of [51], i.e. (Ey) and (F,} are holomorphic vector bundles on X
in the weakest sense, but we assume that there exists a continuous

parametrix {Py Fx 2 Ex) such that the families {(T,P, - 1} and

(P Ty .1} are compact, i.e. are compact operators which depend

continuously on x in the uniform topology.

Proof of (B.7). We can assume the bundles {E.) and (F;) are trivial,
and that the T, have index 0. Then for each finite rank operator

t : E > F the set

U = (x eX: Tx + t is invertible )

is open in X, We trivialize the lines Det:T for X ¢ Ut by
b4
r rJ?[Tx 4+ t, 1}, and in the intersection Ut n Ut the transition
0 1
function is

% +> det((Ty + £)(T + €07 1)

= det(l + (&, - £ )(Tx + £)7")
which is holomorphic.

The main general fact about determinant lines is

Proposition (B.8). Let

T iT LT"

The Definition of Conformal Field Theory 571

be a commutative diagram of topological vector spaces with exact rows

and Fredholm columms. Then there is a canonical isomorphism
Dety & Detp: @ Detou
which depends holomorphically om T',T,T".

vExact rows" means of course that E' and F' are topoloéical

subspaces of E and F, and that E" and F" have the quotient topology.
Proof: 1If t',t" are finite rank operators such that T’ + t' and
T 4 t" are invertible then one can find t of finite ramk such that
T + t forms a commutative diagram with T' + t' and T" + t". The

desired isomorphism is

[T+t 1] e [T+ ¢, 1] @ [T" + ", 1]

The determinant line, the restricted Grassmannian, and the central

extension of GLres

A polarized.topological vector space E (in the sense of Definition
({8:8)) has a restricted Grassmannian Gr(E) which consists of the
(+1) -elgenspaces of the preferred involutions J which define the
polarization. If W, and W, are two points of Gr(E) there is a
preferred class of Fredholm operators T : W, = W, namely those which

differ from the inclusion W, -+ H by trace class operators.
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Definition (B.9). For Wo,Wl in Gr(E) we write Det(Wo;Wi) for Detq,

whexe T ¢ W, = W, is such a Fredholm operatoxr.

From (B.3) we know that Det(Wo;W1) does not depend on the choice
of T. If W, is held fixed then U Det(Wo;W) is a holomorphic line
bundle on Gr(E). This is the der;rminant line bundle of [PS](Chap.
10): there the chosen Wo was called H,.

For three spaces W ,W ,W, we clearly have
Det(wo;wz) = Det(W, ;W,) @ Det(W, ;W)
Now suppose that g : E 5 E belongs to the restricted general

linear group of E, i.e. that gJg"! - J is of trace class for a

preferred invelution J.

Definition (B.10). For g ¢ GL

res (E) we define

Det:g = Dat(W;gW) ,

where W is an element of Gr(E).

The line D«e,t:g is independent of W, for if W, and W, are two
choices then g defines an isomorphism between Det(wo;wi) and

Det(gwo;gwl), and hence between Det(Wo;gWO) and

Det(Wo;gWo) ® Det(wu;W,)* ® Det(gWo;gW1) = Det(W,;ng) .
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Evidently Det = Det_ @ Det_ , and so we can define a central
€182 2]

&

extension of GLres(E) which consists of all pairs (g.\) with N\ e Detg. :

By its construction this group acts holomorphically on the line bundle

U Dec(Wo,W) for any choice of W .
W

Riemarmn surfaces

We conclude this appendix with a result on the determinant line of

a Riemann surface.

Proposition (B.11). If a closed Riemann surface Z is the union of two
surfaces X snd ¥ which intersect im a l-manifold § then Det; is

canonically isomorphic to the determinant line of the map

Hol(X) @ Hol(Y) - Q%s)

¢ £, & )r> (E]5)-(g]s) .

Proof: First consider the diagram

a°zy - 2°(x) @ 9°(V) - J%(s)

13 i i

% (z) » R°N(X) @ R°N(Y) @ 8%(s) = JI°(s) @ 9%s) ,

where J°(S) (resp. J°'(S)) is the space of infinite jets of functionms

(resp. (0,1)-forms) on Z along S,
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the middle vertical map is (£,g) —> (3f,3g,(£]s)-(g|5)) ,

and the right-hand vertical wap is f > (3F,£[8) -

The horizontal maps are defined in the obvious way to glve short exact
sequences. Notice that an element £ of J%(S) can be identified with
the sequence {fy} of smooth functions on § such that £ = & fkyk, where
y 'is a coordinate on Z transverse to S. The right-hand vertical map is
then
£y —> (£, f+£ , £+, ,...},

and is therefore an isomorphism. Thus by (B.8) we can identify Dety
with the determinant of the middle map. Proposition (8.11) is then
obtained from the diagram

Hol(X) @ Hol(Y) - 2%x) @ 2°(N 5> QX @ 2°'(Y)
1 1 1l id

2y . o+ 00 @ @' (W) @ B%S) > 07X 8 2T (V)
just as in the proqf of (6.3).

Corollary (B.12). In the situation of (B.1ll) we have

Dety, % Dety ® Dety .
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Proof: The right-hand side is the determinant of the map

Hol(X) @ Hol(Y) - °(S)

( £, 8 ) v=> (£]S)_ - (&]8), .

This differs from the map of (B.9) by a trace-class operator (cf. the

proof of (6.4)):

Notice that (B.12) provides the proof of Proposition (6.5), which

was omltted earlier.
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