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This is a brief note explaining the Metropolis–Hastings algorithm[3, 2] and giving a brief example. This
is a note for part of Math 312 Summer 2019 lecture 13. It is primarily based off the excellent exposition
in [1].

Aim 0.1. Given a vector ~p = (p1, ..., pn)T , satisfying 0 ≤ pi ≤ 1 for each i, 1 ≤ i ≤ n, and satisfying∑n
i=1 = 1, we want to create a Markov chain with the property that ~p is its (only) steady state (equilibrium)

probability distribution.

Warning 0.2. We continue to use the convention that the transition matrix of a Markov chain is the
matrix T such that Tij (the entry in ith row and jth column of T ) is the probability of transitioning from
state j to state i in a given time step1. Some authors instead work with T T .

1. Metropolis–Hastings Algorithm

The Metropolis Hastings Algorithm consists of the following two steps, and produces a Markov chain
as wanted in aim 0.1.

(1) Pick an arbitrary Markov chain on n states, with the property that
• For any pair of states i, and j, if we are in state i there is a non-zero probability that we will
be in state j in some future time step.

(2) Let T ′ be the transition matrix for the Markov chain in the first step of this algorithm. We form
a new Markov chain by forming the new transition matrix:

Tij =

T ′
ij min{1,

T ′
jipi

T ′
ij

pj
} if i 6= j

1−
∑

l 6=j Tlj if i = j

Note firstly that the entries in the columns of T are all positive, and for each column the entries sum
to one. Hence we indeed have the transition matrix for a Markov chain.

Note that it is not a problem if T ′
ij or pi is zero – as we will simply take 1 as the minimum.

Proposition 1.1. The vector ~p is a steady state probability distribution for the Markov chain produced by
the Metropolis–Hastings Algorithm.

Proof. First note that Tijpj = Tjipi.
Hence the ith entry of T ~p is

(T ~p)i =
n∑

j=1
Tijpj

=
n∑

j=1
Tjipi

= 1

where the final line follows as the entries in each column of T sum to one.
Hence ~p is a steady state (equilibrium) distribution of the Markov chain produced by the Metropolis–

Hastings algorithm. �

1Assuming that we are in state j.
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2. Example

Suppose we want a Markov chain with the steady state (equilibrium) probability distribution ~p =
(

3/4
1/4

)
.

We implement the Metropolis–Hastings algorithm as follows:
• We first pick the Markov chain with transition matrix

T ′ =
(

1/2 1/2
1/2 1/2

)
.

• We now have T12 = 1
2 min{1, 3/4

1/4} = 1/2. Hence T22 = 1− 1
2 = 1

2 .
We have T21 = 1

2 min{1, 1/4
3/4} = 1

6 . Hence T11 = 5/6.
The Markov chain we get hence has transition matrix

T =
(

5/6 1/2
1/6 1/2

)

Solving for eigenvectors of T corresponding to the eigenvalue 1, gives us s

(
3
1

)
. Normalizing tells us

that
(

3/4
1/4

)
is a steady state probability distribution for T .
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