
MATH 312 (SUMMER II 2019): LINEAR ALGEBRA, ASSIGNMENT 2

Due: Monday 22nd July, beginning of class..
Note: Questions 9,11, and 12 have a significantly higher number of points attached to them.
Note: Answers must be fully explained (unless otherwise specified), using full sentences for full credit.

You are encouraged to work on these questions with your classmates, however please write down all people
you discussed problems with on your assignment, and write up all solutions on your own. Asking these
questions on online discussion boards is not acceptable.

(1) (a) Consider the plane in R3, spanned by the vectors

1
1
0

 and

2
1
0

. What is the minimum

distance between a point on this plane and the point

 6
−2
5

?

(b) What is the angle between the vectors

1
4
3

 and

6
2
3

?

(c) Consider the line (x, y, z)T = (2t, 3t,−t)T (recall e.g. (2t, 3t,−t)T =

2t
3t
−t

). What is a line

(passing through the origin) perpendicular to this line and lying in the plane spanned by the
vectors (9, 4,−1)T and (7, 1, 0)T ?

(2) Which of the following are vector spaces. Either show they are vector spaces, or show they are
not.
(a) The set of functions1 f : R→ R, with addition and scalar multiplication of functions defined

in the normal way, that is for f, g : R→ R, a ∈ R, and x ∈ R :

(f + g)(x) = f(x) + g(x),

(af)(x) = a(f(x)).

(b) The set V ×W , where V and W are vector spaces over k. Addition is given by (~v1, ~w1) +
(~v2, ~w2) = (~v1+ ~v2, ~w1+ ~w2), and scalar multiplication (by a ∈ k) is given by a(~v, ~w) = (a~v, a~w).
Note: This vector space is denoted by V ⊕W .

(c) R2, with the normal addition, but with scalar multiplication given by

c

(
x1

x2

)
=
(
cx1

x2

)
.

(d) The complex numbers over the real numbers (with the usual multiplication and addition).
That is, is C a R-vector space?

(e) Hom(V,W ) – The space of Linear functions between two vector spaces V and W (over k).
Usual addition and multiplication of functions (as in (a)).

(f) Invertible 3× 3 real matrices.
(g) The space of solutions to the differential equation d3y

dx3 = y on some interval (normal addition,
scalar multiplication of functions).

1Note: We could also replace the word functions here with either "continuous functions" or "differentiable functions"
without changing the answer, however the fact that e.g. the sum of two continuous function is continuous is really a question
of analysis and outside the scope of this course.

1
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(h) The space of solutions to d3y
dx2 = y2 on some interval (normal addition, scalar multiplication

of functions).
(3) Consider the set of functions2 f : [0, 1]→ C as a vector space over the complex numbers. Equip it

with the inner product

〈f, g〉 =
∫ 1

0
f(x)g(x)dx.

Show that the functions {e2πinx|n an integer. ie. n = ...− 2,−1, 0, 1, 2, ...} are orthonormal (we
call a set of functions fαα∈S orthonormal if ||fα|| = 1 for all α ∈ S, and 〈fα, fβ〉 = 0 if α 6= β).

(4) Discrete Fourier Series. Show that the set {~v1, ..., ~vn} of Cn given by

( ~vk)j = 1√
n
e2πik(j−1)/n

(that is the jth entry of the vector ~vk is 1√
n
e2πik(j−1)/n) is an orthonormal basis for Cn (with

respect to the standard inner product on Cn; 〈(a1, a2, ..., an)T , (b1, ..., bn)T 〉 :=
∑n
i=1 aibi).

Hint: Use the formula for partial sums of geometric series.
Write the coordinate vector ~e1 = (1, 0, 0, .., 0)T in this basis.

(5) Which of the following functions are inner products on the given vector space, of for (c)-(e) satisfy
all the axioms of an inner product space except the condition; 〈f, f〉 = 0 only if f = 0:

(a) On R2, 〈x, y〉 := xTAy for A =
(

3 1
0 −4

)
.

(b) On R2, 〈x, y〉 := xTAy for A =
(

3 1
0 4

)
.

(c) On the set of functions3 f : [0, 1] → C as a vector space over the complex numbers, the
function

〈f, g〉 :=
∫ 1

0
f(x)g(x)w(x)dx

where w(x) = 1 + x2.
(d) On the set of functions4 f : [0, 1] → C as a vector space over the complex numbers, the

function

〈f, g〉 :=
∫ 1

0
f(x)[g(x)]2dx.

(e) On the set of functions5 f : [0, 1] → C as a vector space over the complex numbers, the
function

〈f, g〉 :=
∫ 1

0
[f(x)g(x)]2dx.

(6) Calculate the matrix6 describing rotation (your choice of direction) of π3 radians around the line7xy
z

 = t

1
2
3

 , t ∈ R

in R3.
(7) Consider graph 1 from question 12 of Assignment 1. How many paths of length 100 are there

between any two vertices?

2Strictly speaking "L2" -functions. This means that the necessary integrals are defined and converge, and solves the
problem that this doesn’t satisfy 〈f, f〉 = 0 if and only if f = 0 if we work with the usual notion of function.

3Strictly speaking integrable functions.
4Strictly speaking integrable functions.
5Strictly speaking integrable functions.
6With respect to the standard basis of R3.
7That is restricting to each plane orthogonal to this line, we get a rotation of π3 radians around the point of intersection

with this line.
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(8) Consider C3 with the standard inner product. Fix a matrix A. Show that there is a unique matrix
A∗ such that

〈A~x, ~y〉 = 〈~x,A∗~y〉

for all ~x, ~y ∈ C3. If A =

1 2 3
4 5 6
7 8 9

, what is A∗?

Note, we call A∗ the adjoint of A.
(9) Let V be a finite dimensional vector space over a field k, and let V ∗ := Hom(V, k), where by

Hom(V, k) we mean the set of linear functions f : V → k, with addition and scalar multiplication
defined in the usual way for functions. Given a basis {~v1, ..., ~vn} of V we can define elements
δ~vi
∈ V ∗ as the unique element8 of V ∗ such that

δ~vi
(~vj) =

1, if i = j.

0, otherwise.
(0.1)

(a) Explain why equation 0.1 uniquely defines an element of V ∗. What is

δ~vi
(a1 ~v1 + a2 ~v2 + ...+ an ~vn)

(b) Show that {δ~v1 , ..., δ ~vn
} is a basis of V ∗.

(c) Show that there is then a unique linear isomorphism9 Φ : V → V ∗, with Φ(vi) = δvi
.

(d) Does the map Φ depend on the choice of basis?
(e) If V is a real10 inner product space, show that the map V → V ∗, ~v 7→ 〈−, ~v〉 is a linear

transformation. Note that 〈−, ~v〉 : V → k is the function that maps ~w 7→ 〈~w,~v〉 for ~w ∈ V .
(f) (Harder) Using the same procedure and the basis {δ~v1 , ..., δ~vn

} of V ∗ we can define a linear
isomorphism Ψ : V ∗ → (V ∗)∗. Show that Ψ ◦ Φ : V → (V ∗)∗ does not depend on the choice
of basis we started with.

(g) Let V,W be two vector spaces with bases {~v1, ..., ~vn} and {~w1, ..., ~wm}. Show that a basis of
Hom(V,W ) is given by {~wjδ~vi

|1 ≤ i ≤ n, 1 ≤ j ≤ m}, where ~wjδ~vi
(~v) = δ~vi

(~v)~w.
(h) Let V = R2, W = R2 with the standard bases. Write down the matrices corresponding to

the basis vectors for Hom(R2,R2) described in the previous part of this question.
(i) If we have a linear function f : V →W , show that the map

f∗ : W ∗ → V ∗

defined below is linear. Let δ ∈W ∗, that is δ is a linear function δ : W → k. Let ~v ∈ V . We
define f∗ by

(f∗(δ))(~v) = δ(f(~v))

or equivalently by
f∗(δ) := δ ◦ f : V → k.

(10) Consider the basis

{

1
0
1

 ,

1
1
0

 ,

0
1
1

}
of R3. Produce an orthonormal basis from this using the Gram–Schmidt method. What is the
base change matrix between the standard basis and this basis?

8Note that while δ~vi
is a vector we are simplifying notation by not writing an arrow above it.

9A linear isomorphism is a linear map Φ : V →W , such that there exists an inverse Ψ : W → V , such that Ψ ◦Φ = IdV ,
Φ ◦Ψ = IdW . Equivalently Φ is an isomorphism if Im(Φ) = W (Im(Φ) denotes the image of Φ, we have also sometimes
called this the column space of Φ), and Ker(Φ) = {~0} (Ker(Φ) denotes the Kernel of Φ, we have also called this the null
space of Φ).

10That is the underlying vector space is a vector space over R.
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(11) Quotient Vector Spaces: Let W be a vector subspace of V . Consider the relation 11 ∼W on V ,
defined by ~v1 ∼W ~v2 if and only if ~v1 − ~v2 ∈W .

Show that:
(a) If ~v1 ∼W ~v2 then ~v2 ∼W ~v1 for all ~v1, ~v2 ∈ V .
(b) We have ~v ∼W ~v for all ~v ∈ V .
(c) If ~v1 ∼W ~v2 and ~v2 ∼W ~v3 then ~v1 ∼W ~v3, for all ~v1, ~v2, ~v3 ∈ V .

Remark: We call such a relation an equivalence relation12. We can then define the quotient set
V/W . For ~v ∈ V , the conjugacy class of ~v is the set13 [v] := {~u ∈ V |~u ∼W ~v}. The set V/W is
the set of ∼W conjugacy classes in V .

(d) Draw some conjugacy classes of the relation ∼W on R2 for W = Span(
(

1
2

)
) ⊂ R2.

We equip V/W with the structure of a vector space as follows:
• [~v] + [~u] = [~v + ~u].
• a[~v] = [a~v].

(Harder) Show that
(e) The addition and scalar multiplication operations above are well defined14.
(f) That these operations make V/W into a vector space.

(12) (Harder) A Better approach to row space: If we have a linear function f : V → W between
two finite dimensional vector spaces V and W , then we can describe the column space CS(f) =
Range(f) ⊂ W , and the Null space N(f) = f−1(~0) intrinsically. That is to say they do not
depend on a choice of basis.

Defining the row space is already difficult. A basis B := {~v1, ..., ~vn} of V gives us a linear map15

ΦB : Rn → V , ΦB((a1, ..., an)T ) = a1 ~v1 + ...+ an~vn. We can write a matrix Af representing f
with respect to the basis {~v1, ..., ~vn}, and a basis {~w1, ..., ~wn} of W . The row space of this matrix
RS(Af ) ⊂ Rn is a vector subspace of Rn. Hence ΦB(RS(Af )) is a vector subspace of V .
(a) Show that ΦB(RS(Af )) ⊂ V depends on the choice of bases16 – that is to say it is not an

intrinsic property of f (Note that both the map ΦB, and the matrix Af change as the basis
B is changed). Ie. Give an example of a linear transformation f and two choices of bases for
V and W such that for the matrices Af,1, Af,2 representing f in these bases, and the maps
Φ1,Φ2 : Rn → V corresponding to these bases, we have

Φ1(RS(Af,1)) 6= Φ2(RS(Af,2))

as subspaces of V .
(b) Which changes of basis of V,W preserve Φ1(RS(Af,1))?
The moral of the story is that instead of using the RS(Af ), we should use V/N(f), (N(f) = Ker(f)
is the Kernel of f , or the null space of f) which we call the coimage of f , and does not depend on
a choice of basis.
(c) Show that17 V/N(f)⊕N(f) ∼= V (ie. that there is an isomorphism V → V/N(f)⊕N(f)).

11This is relation in the sense of "binary relation," which you can look up on e.g. wikipedia. The idea is that this is
completely analogous to how we define (e.g.) "≤"; we write a ≤ b if and only if b− a is a non-negative real number. Similarly
here we are defining a relation between vectors "∼W ", and we write ~v1 ∼W ~v2 if and only if ~v1 − ~v2 ∈W .

12You may wish to look up equivalence relation and quotient set on wikipedia or otherwise.
13Warning: The notation of square brackets is now overloaded as we are using it for both matrices and for conjugacy

classes.
14That is to say the definition makes sense, and does define a way to add vectors, and scale by scalars. This is not

obvious because suppose that [v1] = [v2]. Then [~v1] + [~u] = [~v2] + [~u]. Hence one requirement for this definition of addition
to make sense it needs to be the case that [~v1 + ~u] = [~v2 + ~u].

15In fact a linear isomorphism.
16Strictly speaking it only depends on the choice of basis of V
17See question 2(b) for the notation ⊕.
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(d) Given a basis give an isomorphism RS(Af )→ V/N(f).
Remark: For the first of these you should notice that there is no natural choice of isomorphism.
So the most "natural" relation in the absence of an inner product is that the sequence

1→ N(f)→ V → V/N(f)→ 1

has the property that the image of each arrow is the kernel of the next arrow (as we move from
left to right).


