
MATH 312 SUMMER 2019: ASSIGNMENT 4

BENEDICT MORRISSEY

Due: Part I due Monday 5th August, beginning of class. Part II is extra credit due
Friday 9th July 3PM (easiest to email it to me).

Note: Use of computers is necessary for Part II of this assignment. We are going to
spend a class next week (Monday or Tuesday) on computational tools/methods – probably
primarily using R. Provide any code/script that you write (Any language is acceptable). R
is freely available. Note that Matlab is available in some UPenn computer labs, there is
also an open source analogue Octave.

Note: Answers must be fully explained (unless otherwise specified), using full sentences for full credit.
You are encouraged to work on these questions with your classmates, however please write down all people
you discussed problems with on your assignment, and write up all solutions on your own. Asking these
questions on online discussion boards is not acceptable.

1. Part I

(1) (Question 10 of Assighment 3) We denote by κ(T ) the condition number1 of T , for an invertible
linear function T between inner product spaces.
(a) Show that κ(TS) ≤ κ(T )κ(S) (S : V → W , T : W → U invertible linear transformations

between inner product spaces V , W , and U).
(b) Write down a matrix with a condition number of 2.
(c) Write down a matrix with a condition number of 1.
(d) (Harder) Describe all 2× 2 matrices with a condition number2 of 1.

(2) L1 Curve fitting via Gradient Descent.
(a) Show that the function ‖−‖1 : Rn → R, ‖~v‖1 :=

∑n
i=1 |(~v)i|, (where (~v)i refers to the ith

entry of the vector ~v), is a norm3 on Rn. This is called the L1-norm.
(b) Show that if we have a norm ‖−‖ coming from4 an inner product 〈−,−〉 on a real vector

space V , then we have the identity

〈~x, ~y〉 = ‖~x+ ~y‖2 − ‖~x− ~y‖2

4 .

(c) Using the above or otherwise, show that for n > 1 there is no inner product 〈−,−〉1 :
Rn × Rn → R, with the property that the associated norm5 is the norm ‖−‖1 defined above.
Note: Because of this the minimization procedure via projection we used for least squares
curve fitting will note work in this case. We can instead try gradient descent. This comment
is relevant to problem 1 of Part II of the assignment.

(d) As with least squares minimization we can reduce curve fitting to minimizing f(x) = ‖A~x−~b‖1

for some matrix A, and vector ~b. If we try doing gradient descent starting with a vector ~x0,
what is (D~xf)(~x0)?
Note: The natural last part of this question is the first question in part 2 of this assignment.

1Recall that κ(T ) = ‖T‖‖T−1‖, where we use the norm of part (b) of Question 9 of assignment 2.
2By the condition number of a matrix we mean the condition number of its associated linear transformation.
3In the sense of either question 9 of homework 3, or in the sense of the wikipedia page "Normed Vector Space."
4In the sense of question 9 a) of assignment 3
5ie. The norm produced as in question 9 a) of assignment 3
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(3) Use the Metropolis–Hasting Algorithm to the find a Markov chain on three states, with steady
state distribution ~p =

( 1
4 ,

1
2 ,

1
4
)
.

Check that the Markov chain you produce does indeed have the wanted steady state distribution.
(4) Positive Semi-Definite Matrices.

(a) Let A be a (real) matrix. Show that B = AAT is symmetric (ie. BT = B), and ~xTB~x ≥ 0
for all ~x ∈ Rn (we call this being positive semidefinite).

(b) Show that if B is a real, symmetric, and positive definite (meaning that ~xTB~x ≥ 0 for all
~x ∈ Rn, with equality if and only if ~x = 0) matrix, then we can define an inner product on
Rn defined by

〈~x, ~y〉 := ~xTB~y.

(c) Show that if B is real, symmetric and positive semidefinite then all eigenvalues are real.
(d) Show that eigenvectors corresponding to different eigenvalues of a symmetric, positive

semidefinite matrix B are orthogonal (Hint: Use Question 8 of assignment 2, to calculate the
dot product ~x ·A~x, in two different ways.)
Linear Analogue of Kernel Trick:

(e) (Harder) Let B be a real, n× n, symmetric, positive semidefinite matrix. Show that (in a
modification of Question 9 (e) of assignment 2) there is a linear map Rn pB−−→ (Rn)∗, where
pB(~v) = fB,~v : Rn → R, defined by

fB,~v(~w) = ~wTB~v.

(f) What is the kernel of the map pB above?
(g) (Harder) For

B =

2 2 2
2 2 2
2 2 2


what is the Moore–Penrose pseudoinverse6 of the map pB defined in part (e)?

(5) Perron–Frobenius Theory:
(a) Give an example of a Transition matrix for an irreducible Markov chain of period 3.
(b) Give an example of a Transition matrix for a Markov chain of period 2, which is not irreducible.
(c) (Harder) Suppose that a Markov chain is aperiodic. Furthermore suppose that it is not

irreducible, but we can partition the states into two sets I and J such that:
• For any states i1, i2 ∈ I, a system in the state i1 has a non-zero probability of reaching

the state i2 at some future time step.
• For any states j1, j2 ∈ J , a system in the state j1 has a non-zero probability of reaching
the state j2 at some future time step.

• If a system is in a state i ∈ I, the state has a non-zero probability of being in a state
j ∈ J at some point in the future.

Show that the Markov chain has a unique steady state (equilibrium) probability distribution.

2. Part II

(1) Use a computer to do gradient descent to approximate an L1-line of best fit7 y = ax+ b to the
following data points:

(0, 4), (1.1, 4.3), (1.9, 2.7), (3.3, 8.0), (2.5, 6.9).

6We need a inner product on (Rn)∗. Using the dot product and Question 9 (e) of assignment 2, we get a linear isomorphism
Rn → (Rn)∗. Let r be the inverse of this map. We then get an inner product on (Rn)∗ × (Rn)∗, as the composition
(Rn)∗ × (Rn)∗ r×r−−−→ Rn × Rn −•−−−−→ R, where the second map is the dot product on R.

7Ie one that minimizes the L1-norm of the error.
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Also find the least squares minimization solution. Plot both lines, together with the data.
(2) Use gradient descent to do logistic regression on the following set of data points, to distinguish

those of type A from those of type B:

Type A Data Points Type B Data Points
(1, 2) (3, 2.7)
(2, 2) (2, 2.3)

(3, 3.1) (4, 2)
(1, 4) (3.5, 3.6)

(2, 3.5) (1.5, 0.5)

(3) Use a support vector machine to classify the above data rather than logistic regression. Plot the
two different hyperplanes corresponding to the two different classifications.

(4) Use a computer to do Monte Carlo simulation (you may use a uniform distribution) to estimate
the value of ∫ 1

0
sin3(x)cos3(x)[cos−1(x)tan−1(x)]4dx

Note: By cos−1 we mean the inverse cosine function, sometimes denoted by "arccos."
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