Young's, Minkowski's, and Hölder's inequalities

September 13, 2011

Contents

1 Introduction 1

2 Young's Inequality 2

3 Minkowski's Inequality 3

4 Hölder's inequality 5

1 Introduction

The Cauchy inequality is the familiar expression

$$
\begin{equation*}
2 a b \leq a^{2}+b^{2} \tag{1}
\end{equation*}
$$

This can be proven very simply: noting that $(a-b)^{2} \geq 0$, we have

$$
\begin{equation*}
0 \leq(a-b)^{2}=a^{2}-2 a b-b^{2} \tag{2}
\end{equation*}
$$

which, after rearranging terms, is precisely the Cauchy inequality. In this note, we prove Young's inequality, which is a version of the Cauchy inequality that lets the power of 2 be replaced by the power of p for any $1<p<\infty$. From Young's inequality follow the Minkowski inequality (the triangle inequality for the l^{p}-norms), and the Hölder inequalities.

2 Young's Inequality

When $1<p<\infty$ and $a, b \geq 0$, Young's inequality is the expression

$$
\begin{equation*}
a b \leq \frac{p-1}{p} a^{\frac{p}{p-1}}+\frac{1}{p} b^{p} . \tag{3}
\end{equation*}
$$

This seems strange and complicated. What good could it possibly be?
The first thing to note is Young's inequality is a far-reaching generalization of Cauchy's inequality. In particular, if $p=2$, then $\frac{1}{p}=\frac{p-1}{p}=\frac{1}{2}$ and we have Cauchy's inequality:

$$
\begin{equation*}
a b \leq \frac{1}{2} a^{2}+\frac{1}{2} b^{2} \tag{4}
\end{equation*}
$$

Normally to use Young's inequality one chooses a specific p, and a and b are free-floating quantities. For instance, if $p=5$, we get

$$
a b \leq \frac{4}{5} a^{5 / 4}+\frac{1}{5} b^{5}
$$

Before proving Young's inequality, we require a certain fact about the exponential function.

Lemma 2.1 (The interpolation inequality for e^{x}.) If $t \in[0,1]$, then

$$
\begin{equation*}
e^{t a+(1-t) b} \leq t e^{a}+(1-t) e^{b} \tag{5}
\end{equation*}
$$

Proof. The equation of the secant line through the points $\left(a, e^{a}\right)$ and $\left(b, e^{b}\right)$ on the graph of e^{x} is precisely

$$
\begin{equation*}
t \mapsto\left(t a+(1-t) b, t e^{a}+(1-t) e^{b}\right) \tag{6}
\end{equation*}
$$

Obviously the graph of this line intersects the graph of e^{x} at precisely two points: $\left(b, e^{b}\right)$ when $t=0$, and $\left(a, e^{a}\right)$ when $t=1$. To parametrize the graph of e^{x} so that the x-value of this parametrization and that of the parametrization of the secant line are the same, we use

$$
\begin{equation*}
t \mapsto\left(t a+(1-t) b, e^{t a+(1-t) b}\right) \tag{7}
\end{equation*}
$$

But because e^{x} is concave up, any secant line lies above the graph in between the points of intersection. This means precisely that the y-values of these two parametrized curves obey

$$
\begin{equation*}
e^{t a+(1-t) b} \leq t e^{a}+(1-t) e^{b} \tag{8}
\end{equation*}
$$

which was to be proved.

Theorem 2.2 (Young's Inequality) Assume a and b are real numbers, and $p>1$. Then

$$
a b \leq \frac{p-1}{p} a^{\frac{p}{p-1}}+\frac{1}{p} b^{p} .
$$

Proof. There are a number of conceptually different ways to prove this inequality. Our method will use Lemma 2.1. Writing

$$
\begin{align*}
a b & =e^{\log a+\log b} \tag{9}\\
& =\operatorname{Exp}\left(\frac{p-1}{p} \frac{p}{p-1} \log a+\left(1-\frac{p-1}{p}\right)\left(\frac{1}{1-\frac{p-1}{p}}\right) \log b\right) \tag{10}
\end{align*}
$$

from Lemma 2.1 we get

$$
\begin{align*}
a b & \leq \frac{p-1}{p} \operatorname{Exp}\left(\frac{p}{p-1} \log a\right)+\left(1-\frac{p-1}{p}\right) \operatorname{Exp}\left(\left(\frac{1}{1-\frac{p-1}{p}}\right) \log b\right) \tag{11}\\
& =\frac{p-1}{p} \operatorname{Exp}\left(\frac{p}{p-1} \log a\right)+\frac{1}{p} \operatorname{Exp}(p \log b) \tag{12}\\
& =\frac{p-1}{p} a^{\frac{p}{p-1}}+\frac{1}{p} b^{p} . \tag{13}
\end{align*}
$$

3 Minkowski's Inequality

Theorem 3.1 (Minkowski's Inequality) If $1 \leq p<\infty$, then whenever $X, Y \in \mathcal{V}_{F}$ we have

$$
\begin{equation*}
\|X+Y\|_{p} \leq\|X\|_{p}+\|Y\|_{p} \tag{14}
\end{equation*}
$$

Proof. To prove that $\|X+Y\|_{p} \leq\|X\|_{p}+\|Y\|_{p}$, we will replace Y by $t Y$, and use the observation that

$$
\begin{align*}
\|X+Y\|_{p}-\|X\|_{p} & =\int_{0}^{1} \frac{d}{d t}\|X+t Y\|_{p} d t \tag{15}\\
\|X\|+\|Y\|_{p}-\|X\|_{p} & =\int_{0}^{1} \frac{d}{d t}\left(\|X\|_{p}+t\|Y\|_{p}\right) d t \tag{16}
\end{align*}
$$

and then all we need to prove is that

$$
\begin{equation*}
\frac{d}{d t}\|X+t Y\|_{p} \leq \frac{d}{d t}\left(\|X\|_{p}+t\|Y\|_{p}\right) \tag{17}
\end{equation*}
$$

which is actually simpler. Note that the right side of 17 is just $\|Y\|_{p}$. Computing the left
side is slightly tougher:

$$
\begin{align*}
\frac{d}{d t}\|X+t Y\|_{p} & =\frac{d}{d t}\left(\sum_{i=1}^{\infty}\left|x_{i}-t y_{i}\right|^{p}\right)^{\frac{1}{p}} \tag{18}\\
& =\left(\sum_{i=1}^{\infty}\left|x_{i}-t y_{i}\right|^{p}\right)^{\frac{1-p}{p}} \sum_{i=1}^{\infty}\left|x_{i}-t y_{i}\right|^{p-1} \cdot \operatorname{sgn}\left(x_{i}-t y_{i}\right) \cdot y_{i} \tag{19}\\
& =\|X-t Y\|_{p}^{1-p} \cdot \sum_{i=1}^{\infty}\left|x_{i}-t y_{i}\right|^{p-1} \cdot \operatorname{sgn}\left(x_{i}-t y_{i}\right) \cdot y_{i} \tag{20}
\end{align*}
$$

But of course $\operatorname{sgn}\left(x_{i}-t y_{i}\right) \cdot y_{i} \leq\left|y_{i}\right|$, so we have

$$
\begin{equation*}
\frac{d}{d t}\|X+t Y\|_{p} \leq \sum_{i=1}^{\infty}\left(\frac{\left|x_{i}-t y_{i}\right|}{\|X-t Y\|_{p}}\right)^{p-1}\left|y_{i}\right| \tag{21}
\end{equation*}
$$

To proceed from here, we manipulate this expression so that eventually we can use Young's inequality to our advantage. We have

$$
\begin{align*}
\frac{d}{d t}\|X+t Y\|_{p} & \leq \sum_{i=1}^{\infty}\left(\frac{\left|x_{i}-t y_{i}\right|}{\|X-t Y\|_{p}}\right)^{p-1} \frac{\left|y_{i}\right|}{\|Y\|_{p}^{\frac{p-1}{p}}}\|Y\|_{p^{\frac{p-1}{p}}}^{\| y^{2}} \tag{22}\\
& =\sum_{i=1}^{\infty}\left(\frac{\left|x_{i}-t y_{i}\right|}{\|X-t Y\|_{p}}\|Y\|_{p}^{\frac{1}{p}}\right)^{p-1} \cdot \frac{\left|y_{i}\right|}{\|Y\|_{p}^{\frac{p-1}{p}}} \tag{23}
\end{align*}
$$

When $p=1$ we get directly that

$$
\begin{align*}
\frac{d}{d t}\|X+t Y\|_{1} & \leq \sum_{i=1}^{\infty}\left|y_{i}\right| \tag{24}\\
& =\|Y\|_{1} \tag{25}\\
& =\frac{d}{d t}\left(\|X\|_{1}+t\|Y\|_{1}\right) \tag{26}
\end{align*}
$$

as desired. When $1<p<\infty$ we apply Young's inequality to get

$$
\begin{align*}
\frac{d}{d t}\|X+t Y\|_{p} & \leq \sum_{i=1}^{\infty}\left(\frac{p-1}{p}\left(\frac{\left|x_{i}-t y_{i}\right|}{\|X-t Y\|_{p}}\|Y\|_{p}^{\frac{1}{p}}\right)^{(p-1) \frac{p}{p-1}}+\frac{1}{p}\left(\frac{\left|y_{i}\right|}{\|Y\|_{p}^{\frac{p-1}{p}}}\right)^{p}\right) \tag{27}\\
& =\frac{p-1}{p} \sum_{i=1}^{\infty} \frac{\left|x_{i}-t y_{i}\right|^{p}}{\|X-t Y\|_{p}^{p}}\|Y\|_{p}+\frac{1}{p} \sum_{i=1}^{\infty} \frac{\left|y_{i}\right|^{p}}{\|Y\|_{p}^{p-1}} \tag{28}\\
& =\frac{p-1}{p}\left(\frac{\|Y\|_{p}}{\|X-t Y\|_{p}^{p}} \cdot \sum_{i=1}^{\infty}\left|x_{i}-t y_{i}\right|^{p}\right)+\frac{1}{p}\left(\frac{1}{\|Y\|_{p}^{p-1}} \cdot \sum_{i=1}^{\infty}\left|y_{i}\right|^{p}\right)(.2 \tag{29}
\end{align*}
$$

Finally note that $\sum_{i=1}^{\infty}\left|x_{i}-t y_{i}\right|^{p}$ equals precisely $\|X-t Y\|_{p}^{p}$ and $\sum_{i=1}^{\infty}\left|y_{i}\right|^{p}$ equals precisely $\|Y\|_{p}^{p}$. Therefore

$$
\begin{align*}
\frac{d}{d t}\|X+t Y\|_{p} & \leq \frac{p-1}{p}\left(\frac{\|Y\|_{p}}{\|X-t Y\|_{p}^{p}} \cdot\|X-t Y\|_{p}^{p}\right)+\frac{1}{p}\left(\frac{1}{\|Y\|_{p}^{p-1}} \cdot\|Y\|_{p}^{p}\right) \tag{30}\\
& =\frac{p-1}{p}\|Y\|_{p}+\frac{1}{p}\|Y\|_{p} \tag{31}\\
& =\|Y\|_{p} \tag{32}
\end{align*}
$$

Therefore, as desired, we have proved that

$$
\begin{equation*}
\frac{d}{d t}\|X+t Y\|_{p} \leq \frac{d}{d t}\left(\|X\|_{p}+t\|Y\|_{p}\right) \tag{33}
\end{equation*}
$$

so the theorem follows from 15 and 16.

4 Hölder's inequality

Theorem 4.1 (Hölder's inequality) If $X, Y \in \mathcal{V}_{F}$, then

$$
\begin{equation*}
\sum_{i=1}^{\infty} x_{i} y_{i} \leq\|X\|_{\frac{p}{p-1}}\|Y\|_{p} \tag{34}
\end{equation*}
$$

Proof. By Young's inequality we have

$$
\begin{align*}
\sum_{i=1}^{\infty} \frac{x_{i}}{\|X\|_{\frac{p}{p-1}}} \frac{y_{i}}{\|Y\|_{p}} & \leq \sum_{i=1}^{\infty} \frac{\left|x_{i}\right|}{\|X\|_{\frac{p}{p-1}}} \frac{\left|y_{i}\right|}{\|Y\|_{p}} \tag{35}\\
& \leq \sum_{i=1}^{\infty}\left(\frac{p-1}{p} \frac{\left|x_{i}\right|^{\frac{p}{p-1}}}{\|X\|_{\frac{p}{p-1}}^{\frac{p}{p-1}}}+\frac{1}{p} \frac{\left|y_{i}\right|^{p}}{\|Y\|_{p}^{p}}\right) \tag{36}\\
& =\frac{p-1}{p} \frac{1}{\|X\|_{\frac{p}{p-1}}^{\frac{p}{p-1}}} \sum_{i=1}^{\infty}\left|x_{i}\right|^{\frac{p}{p-1}}+\frac{1}{p} \frac{1}{\|Y\|_{p}^{p}} \sum_{i=1}^{\infty}\left|y_{i}\right|^{p} \tag{37}\\
& =\frac{p-1}{p}+\frac{1}{p} \tag{38}
\end{align*}
$$

Thus we have shown that

$$
\begin{align*}
\frac{1}{\|X\|_{\frac{p}{p-1}}\|Y\|_{p}} \sum_{i=1}^{\infty} x_{i} y_{i} & =\sum_{i=1}^{\infty} \frac{x_{i}}{\|X\|_{\frac{p}{p-1}}} \frac{y_{i}}{\|Y\|_{p}} \tag{39}\\
& \leq 1 \tag{40}
\end{align*}
$$

so after multiplying both sides by $\|X\|_{\frac{p}{p-1}}\|Y\|_{p}$ we get

$$
\begin{equation*}
\sum_{i=1}^{\infty} x_{i} y_{i} \leq\|X\|_{\frac{p}{p-1}}\|Y\|_{p} \tag{41}
\end{equation*}
$$

which was to be proved.

