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1 Introduction

The Cauchy inequality is the familiar expression

2ab ≤ a2 + b2. (1)

This can be proven very simply: noting that (a− b)2 ≥ 0, we have

0 ≤ (a− b)2 = a2 − 2ab − b2 (2)

which, after rearranging terms, is precisely the Cauchy inequality. In this note, we prove
Young’s inequality, which is a version of the Cauchy inequality that lets the power of 2
be replaced by the power of p for any 1 < p < ∞. From Young’s inequality follow the
Minkowski inequality (the triangle inequality for the lp-norms), and the Hölder inequalities.
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2 Young’s Inequality

When 1 < p <∞ and a, b ≥ 0, Young’s inequality is the expression

ab ≤ p− 1

p
a

p
p−1 +

1

p
bp. (3)

This seems strange and complicated. What good could it possibly be?

The first thing to note is Young’s inequality is a far-reaching generalization of Cauchy’s
inequality. In particular, if p = 2, then 1

p = p−1
p = 1

2 and we have Cauchy’s inequality:

ab ≤ 1

2
a2 +

1

2
b2. (4)

Normally to use Young’s inequality one chooses a specific p, and a and b are free-floating
quantities. For instance, if p = 5, we get

ab ≤ 4

5
a5/4 +

1

5
b5.

Before proving Young’s inequality, we require a certain fact about the exponential function.

Lemma 2.1 (The interpolation inequality for ex.) If t ∈ [0, 1], then

eta+(1−t)b ≤ tea + (1− t)eb. (5)

Proof. The equation of the secant line through the points (a, ea) and (b, eb) on the graph of
ex is precisely

t 7→
(
ta + (1− t)b, tea + (1− t)eb

)
. (6)

Obviously the graph of this line intersects the graph of ex at precisely two points: (b, eb)
when t = 0, and (a, ea) when t = 1. To parametrize the graph of ex so that the x-value of
this parametrization and that of the parametrization of the secant line are the same, we use

t 7→
(
ta + (1− t)b, eta+(1−t)b

)
. (7)

But because ex is concave up, any secant line lies above the graph in between the points of
intersection. This means precisely that the y-values of these two parametrized curves obey

eta+(1−t)b ≤ t ea + (1− t) eb, (8)

which was to be proved. �

Theorem 2.2 (Young’s Inequality) Assume a and b are real numbers, and p > 1. Then

a b ≤ p− 1

p
a

p
p−1 +

1

p
bp.
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Proof. There are a number of conceptually different ways to prove this inequality. Our
method will use Lemma 2.1. Writing

ab = elog a+ log b (9)

= Exp

(
p− 1

p

p

p− 1
log a +

(
1− p− 1

p

)(
1

1− p−1
p

)
log b

)
, (10)

from Lemma 2.1 we get

ab ≤ p− 1

p
Exp

(
p

p− 1
log a

)
+

(
1− p− 1

p

)
Exp

((
1

1− p−1
p

)
log b

)
(11)

=
p− 1

p
Exp

(
p

p− 1
log a

)
+

1

p
Exp (p log b) (12)

=
p− 1

p
a

p
p−1 +

1

p
bp. (13)

�

3 Minkowski’s Inequality

Theorem 3.1 (Minkowski’s Inequality) If 1 ≤ p < ∞, then whenever X,Y ∈ VF we
have

‖X + Y ‖p ≤ ‖X‖p + ‖Y ‖p. (14)

Proof. To prove that ‖X + Y ‖p ≤ ‖X‖p + ‖Y ‖p, we will replace Y by tY , and use the
observation that

‖X + Y ‖p − ‖X‖p =

∫ 1

0

d

dt
‖X + tY ‖p dt (15)

‖X‖ + ‖Y ‖p − ‖X‖p =

∫ 1

0

d

dt
(‖X‖p + t‖Y ‖p) dt (16)

and then all we need to prove is that

d

dt
‖X + tY ‖p ≤

d

dt
(‖X‖p + t‖Y ‖p) , (17)

which is actually simpler. Note that the right side of (17) is just ‖Y ‖p. Computing the left
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side is slightly tougher:

d

dt
‖X + tY ‖p =

d

dt

( ∞∑
i=1

|xi − tyi|p
) 1

p

(18)

=

( ∞∑
i=1

|xi − tyi|p
) 1−p

p ∞∑
i=1

|xi − tyi|p−1 · sgn(xi − tyi) · yi (19)

= ‖X − tY ‖1−pp ·
∞∑
i=1

|xi − tyi|p−1 · sgn(xi − tyi) · yi. (20)

But of course sgn(xi − tyi) · yi ≤ |yi|, so we have

d

dt
‖X + tY ‖p ≤

∞∑
i=1

(
|xi − tyi|
‖X − tY ‖p

)p−1

|yi|. (21)

To proceed from here, we manipulate this expression so that eventually we can use Young’s
inequality to our advantage. We have

d

dt
‖X + tY ‖p ≤

∞∑
i=1

(
|xi − tyi|
‖X − tY ‖p

)p−1 |yi|

‖Y ‖
p−1
p

p

‖Y ‖
p−1
p

p (22)

=

∞∑
i=1

(
|xi − tyi|
‖X − tY ‖p

‖Y ‖
1
p
p

)p−1

· |yi|

‖Y ‖
p−1
p

p

. (23)

When p = 1 we get directly that

d

dt
‖X + tY ‖1 ≤

∞∑
i=1

|yi| (24)

= ‖Y ‖1 (25)

=
d

dt
(‖X‖1 + t‖Y ‖1) (26)

as desired. When 1 < p <∞ we apply Young’s inequality to get

d

dt
‖X + tY ‖p ≤

∞∑
i=1

p− 1

p

(
|xi − tyi|
‖X − tY ‖p

‖Y ‖
1
p
p

)(p−1) p
p−1

+
1

p

 |yi|

‖Y ‖
p−1
p

p

p (27)

=
p− 1

p

∞∑
i=1

|xi − tyi|p

‖X − tY ‖pp
‖Y ‖p +

1

p

∞∑
i=1

|yi|p

‖Y ‖p−1p

(28)

=
p− 1

p

(
‖Y ‖p

‖X − tY ‖pp
·
∞∑
i=1

|xi − tyi|p
)

+
1

p

(
1

‖Y ‖p−1p

·
∞∑
i=1

|yi|p
)
.(29)
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Finally note that
∑∞

i=1 |xi − tyi|p equals precisely ‖X−tY ‖pp and
∑∞

i=1 |yi|p equals precisely
‖Y ‖pp. Therefore

d

dt
‖X + tY ‖p ≤ p− 1

p

(
‖Y ‖p

‖X − tY ‖pp
· ‖X − tY ‖pp

)
+

1

p

(
1

‖Y ‖p−1p

· ‖Y ‖pp
)

(30)

=
p− 1

p
‖Y ‖p +

1

p
‖Y ‖p (31)

= ‖Y ‖p. (32)

Therefore, as desired, we have proved that

d

dt
‖X + tY ‖p ≤

d

dt
(‖X‖p + t‖Y ‖p) , (33)

so the theorem follows from (15) and (16). �

4 Hölder’s inequality

Theorem 4.1 (Hölder’s inequality) If X,Y ∈ VF , then

∞∑
i=1

xiyi ≤ ‖X‖ p
p−1
‖Y ‖p. (34)

Proof. By Young’s inequality we have

∞∑
i=1

xi

‖X‖ p
p−1

yi
‖Y ‖p

≤
∞∑
i=1

|xi|
‖X‖ p

p−1

|yi|
‖Y ‖p

(35)

≤
∞∑
i=1

p− 1

p

|xi|
p

p−1

‖X‖
p

p−1
p

p−1

+
1

p

|yi|p

‖Y ‖pp

 (36)

=
p− 1

p

1

‖X‖
p

p−1
p

p−1

∞∑
i=1

|xi|
p

p−1 +
1

p

1

‖Y ‖pp

∞∑
i=1

|yi|p (37)

=
p− 1

p
+

1

p
(38)

Thus we have shown that

1

‖X‖ p
p−1
‖Y ‖p

∞∑
i=1

xiyi =

∞∑
i=1

xi

‖X‖ p
p−1

yi
‖Y ‖p

(39)

≤ 1, (40)
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so after multiplying both sides by ‖X‖ p
p−1
‖Y ‖p we get

∞∑
i=1

xiyi ≤ ‖X‖ p
p−1
‖Y ‖p (41)

which was to be proved. �
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