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The operation. of composition may be applied to combine vector-valued functions with
al-valued functions. For example, if F is a vector-valued function whose domain in-
udes the range of a real-valued function , the composition G = Feo u is a new vector-
alued function defined by the equation

G(1) = Flu(n)]

14

CALCULUS OF VECTOR-VALUED FUNCTIONS

r each ¢ in the domain of w.

1If a function F has its values in V,, , then each vector F{¢) has n components, and we can
rite

E) = (i), foD)n- -, fl1D) -

Thus, each vector-valued F gives rise to n real-valued functions f; , . . . , f, whose values at
dre the components of F(¢). We indicate this relation by writing F = (f;, . . ., f,.), and we

14.1 Vector-valued functions of a real variable il f, the kth component of F.

This chapter combines vector algebra with the methods of calculus and describes som
applications to the study of curves and to some problems in mechanics. The concept of
vector-valued function is fundamental in this study.

143 Limits, derfvatives, and integrals

The basic concepts of calculus, such as limit, derivative, and integral, can also be extended
‘ _ to vector-vatued functions. We simply express the vector-valued function in terms of its
DEFINITION. A function whose domain is a set of real numbers and whose range is compenents and perform the operations of calculus on the components.

subset of n-space V, is called a vector-valued function of a real variable.

DEFNITION,  If F = (f1,...,f,) i5 a vector-valued function, we define limit, derivative,

We have encountered such functions in Chapter 13, For example, the line through and integral by the equations

point P parallel to a nonzero vector 4 is the range of the vector-valued function X given b

=P ia tim 79 = (1m0 ..., Tim 7)) ,
for all real ¢.

Vector-valued functions will be denoted by capital letters such as F, @, X, ¥, efc,, or b
small bold-face italic letters £, g, etc.” 'The value of a function F at ¢ is denoted, as usual, b
F(f). 1n the examples we shall study, the domain of F will be an interval which may contai
one ar both endpoints or which may be infinite.

O = (0 S0
[Foar= ([ rman....[ o),

Whenever the components on the right are meaningful.
14.2 Algebraic operations. Components : '

We also say that F is continuous, differentiable, or integrable on an interval if each com-
ponent of F has the corresponding property on the interval.

In view of these definitions, it is not surprising to find that many of the theorems on
limits, continuity, differentiation, and integration of real-valued functions are also valid for
vector-valued functions. We state some of the theorems that we use in this chapter,

The usual operations of vector algebra can be applied to combine two vector-value
functions or to combine a vector-valued function with a real-valued function. If F and G;
are vector-valued functions, and if « is a real-valued function, all having a common domai
we define new functions F 4+ G, uF, and F+ G by the equations

(F+ G0 =Fn+ 61, @F)X)=unFD, T G))==Fr G0).

THEOREM 14.1, If F, G, and u are differentiable on an interval, then so are F 4 G, uF,

The sum F 4 G and the product ¥ are vector valued, whereas the dot product F- G is d F- G, and we have

real valued. If F(£) and G(¢) are in 3-space, we can also define the cross product F % G by:
the formula

(F % G)(1) = F(1) x G(1). F+O =F+6, @Y =uF+tuF', (FG =F-G+F-G.

512




514 Calculus of vector-valued functions

If F and G have values in ¥y, we also have

Fx@ =FxG+FxG.
Proof. To indicate the routine nature of the proofs we discuss the formula for (uF)'.

The proofs of the others are similar and are left as exercises for the reader.
Writing F = (f;, ..., f.), we have

uf = (” 13 =2 ufu) B (I"F)' = ((ufl)I: B (ufn)’) .
But the derivative of the kth component of uF is (uf;) = ufy, +ufy , s0 we have

(uFY = w'(fiy .o f) Fulfl, i) = wF 4+ uF'

The reader should note that the differentiation formulas in Theorem i4.1 are analogous
to the usual formulas for differentiating a sum or product of real-valued functions. Since
the cross preduct is not commutalive, one must pay attention to the order of the factors in

the formula for (F x G
The formula for differentiating F- G gives us the following theofem which we shall nse

frequently.

THEOREM 14.2. If a vector-valued function is differentiable and has constant length on
an open interval I, then F+ F' =0 on I. In other words, F'(t) is perpendicular to F(t) for

each t in I,

Proof, Let g{t) = |F(O|* = F#)- F{z). By hypothesis, g is constant on 7, and hence
g = 0on{ Butsnecegisadot product, we have g’ = F'- F + £~ F'=2F- F'. Therefore
we have F- F =0,

The next theorem deals with composite functions. Tis proof follows easily from Theorems
3.5 and 4.2 which contain the corresponding resuits for real-valued functions.

THEOREM 14.3. Let G = Fou, where F is vector valued and v is real valued. If uis
continyous at t and if F is continuous at u(f), then G is continious at 1. If the derivatives
' (8} and F'[u(9)] exist, then G'{f) also exists and is given by the chain rule,

Gty = F’tu(r)]u’(t).

If a vector-valued function F is continuous on a closed interval [a, 5], then each com-

ponent is continuous and hence integrable on {a, ], s0 Fis integrable on [a, #]. The next-

three theorems give basic properties of the integral of vector-valued functions. In each
case, the proofs follow at once from the corresponding resulis for integrals of real-valued

functions.

THEOREM 14.4. LINEARITY AND ADDITIVITY. If the vector-valued functions F and G
are integrable on [a, b), s0 is o\ F + 0 Jor all ¢, and ¢y, und we have,,

f' (e F (1) + caG(f)) dt = ci‘[: Fo di + cz‘l‘: (o) dt .
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+ Also, for each ¢ in [a, b], we have

LbF(r) dt wf Fl) dt +f” Ft) dt .

THEQREM [4,5. TFIRST FUNDAMENTAL THEOREM OF CALCULUS. Assume F Is a peclor-
valiwed function continwous on [a, b]. If ¢ € [a, b), define the indefinite infegral A to be the
vector-valued function given by

A(X) =L”F(r)dr if a<x<h.

Then A'(x} exists, and we have A'(x) = F(x) for each x in (a, ).

THEOREM 14.6. SECOND FUNDAMENTAL THEOREM OF CALCULUS. Assume that the vector-
valied function F has a continurous derivative F* on an open interval I. Then, for each choice of
¢ and x in I, we have

F(x) = F(©) +L F(H dr .

The next theorem is an extension of the property e 2 F(#) dt = [¥ ¢F(¢) dt, with multipli-
cation by the scalar ¢ replaced by dot multiplication by a vectar C.

THEOREM 14.7. If F = (fi,....[,) is integrable on [a, B, then for every vector C =
(¢y,....¢,) the dot product C - F is integrable on [a, b], and we have

C f: F(n) dt mf: C-F(t)ydt.

Proof. Since each component of F is integrable, we have

b on

b
e f(0) dt = f C-F(tpdr.

= o d==

c f Fydt = 3 o[ £ de =

- Now we use Theorem [4.7 in conjunction with the Cauchy-Schwarz inequality to obtain
the following important property of integrals of vector-valued functions.

THEOREM 14.8. If Fand ||F| are integrable on [a, b] we have

.('i4-1) iJ f" F(r) dt ” < f" 1E@ dt .

" Proof. Let C= [l F(tydt. If C = O, then (14.1) holds trivially. Assume, then, that
C # O and apply Theorem 14.7 to get

(142) Icit=c-c=c¢ f" F@ydi=[ € F(oydt.
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Since the dot product C - F(r} is real valued, we have the inequality

b b b
(14.3) fc-rwar< [ 1c-Fenar < [Jich iFol s,

where in the last step we used the Cauchy-Schwarz inequality, |C- F(1) < FCl 1F7H .
Combining (14.2) and (14.3), we get

ICi < ek [] W ar.

Since [C > 0, we can divide by [C]| to get (14.1).

14.4 Exercises

Compute the derivatives F'(£) and F*(#) for each of the vector-valued functions in Exercises I :
through 6.
1R = (205 ),
2. F{ = {cos ¢, sin? 1, sin 2¢, tan ¢).

4. F() = 2eti + 3e¥j.
5, F(f) = cosh 1§ 4 sinh 2¢j + e 5k,

3. F(f) = (arcsin 1, arccos ¢}, 6. F() =log(l + i + arctan¢j +

— k
L+
7. Let F be the vector-valued function given by

— 2

2t _+1 , k‘
Py pedtEe

FO =1

Prove that the angle between F(f) and F'(f) is constant, that is, iridependent of ¢

Compute the vector-valued integrals in Exercises 8 through 11,

— 1
8. fl(r,\/r,eﬁ)dr. 1o.f (
0 0

et

o
i+e='+1+e*’)d"

wfd 1
9. (sin ¢, cos {, tan ) df. 11, J (teti + Petf + te—th) dt.
[ o .
12. Compute 4 - B, where A = 2 —4j + kand B = T4 (ee®i 4 ¢t cosh 2¢f + 2te k) di.
13. Given a nonzere vector 8 and a vector-valued function F such that F(#)- B =1t for all 4=
and such that the angle between F{r) and B is constant (independent of #). Prove that F(9) ;
is orthogonal to £7(2). .
14. Given fixed nonzero vectors A and B, let F(f) = ¢®A4 + ¢ *B. Prove that F'{¢} has the same .
direction as F{¢).
15. f G = F x F’, compute G’ in terms of F and derivatives of F.
16. If G = F-F" » F",prove that ¢’ = F- F" X F,
[7. Prove that iim,_, F(f) = A if and only if lim,_., |F() — Al = 0.
18. Prove that a vector-valued function F is differentiable on an open interval I if and only
for each ¢ in I we have ’
F() = lim ! Fit + i — F@1)).
i~ h
19, Prove the zero-derivative theorem for vector-valued functions. If F/(r) = O for each tina

open interval [, then there is a vector ¢ such that F(f) = Cforall zin [

24,

(14.4)
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20. Given fixed vectors 4 and B and a vector-valued function F such that F'(r) = 14 + B,
determine F(¢) if F(0) = D and F{(0) = C.

A differential equation of the form ¥'(x) + p(x) ¥(x) = Q(x), where p is a given real-vaiued
function, Q a given vector-valued function, and ¥ an unknown vector-valued function, is called
a first-order linear vector differential equation. Prove that if p and Q are continuous on an
interval I, then for each a in T and each vector B there is one and only one solution ¥ which
satisfies the initial condition Y{(g) = B, and that this solution is given by the formula

21.

Y() = Bt 4 e [* ogestel i
[

where g(x) = |7 p() dr.

. A vector-valued function F satisfies the equation tF'(f) = F(#) + tA for each ¢ > 0, where 4
is a fixed vector. Compute F'(1} and F(3) in terms of 4, if F(I) = 24.

. Find a vector-valued function F, continuous on the interval (0, 4 oo}, such that

1 o
Fx) = xe®A +-J F{de,
* 1

for all x > 0, where A is a fixed nonzero vector.

A vector-vaiued function F, which is never zero and has a continuous derivative F’(r) for
all ¢, is always parallel to its derivative. Prove that there is a constant vector 4 and a positive
real-valued function « such that F(#) = u(r)A4 for all 1.

'14.5 Applications to curves. Tangency

: " Let X be a vector-valued function whose domain is an interval 1. As ¢ runs through I,

the corresponding function values X(¢) run through a set of points which we call the

.graph of the function X If the function values are in 2-space or in 3-space, we can visualize

the graph geometrically. For example, if X(t) = P + 14, where P and 4 are fixed vectors
inVy, with 4 # O, the graph of X is a straight fine through P parallel to 4. A more general

“function will trace out a more general graph, as suggested by the example in Figure 14.1.
'-_lf X is continuous on [, such a graph is called a curve; more specifically, the curve described
by X. Sometimes we say that the curve is described parametrically by X. The interval T
is called a parametric interval;, each t in I is called a parameter.

Properties of the function X can be used to investigate geometric properties of its graph.

':'In particular, the derivative X" is refated to the concept of tangency, as in the case of a
‘teal-valued function. We form the difference quotieat

Xt + b)Y — X(1)
I

and investigate its behavior as & -— 0. This quotient is the product of the vector X(r+ 1 —
“X(£) by the scalar 1/h. The numerator, X(¢ + &) — X{1), illustrated geometrically in

Figure 14.2, is parallel to the vector n (14.4). If we express this difference quotient in

terms of its components and. let # — 0, we find that

i X ) = X _

B0 h

X',
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X+ h)

- X(1)

- ) -y

x X

Figure 14.1 A curve traced out by a Figure 14,2 The vector X(r + A) — X(9) is
vector X(1). parailel to [X(¢ -+ k) — X(D)]fh.

assuming that the derivative X’(t) exists. The geometric interpretation of this relation
suggests the following definition.

DEFINITION, Let C be a curve described by a continuous vector-valyed function X. If
the devivative X'(t) exists and is nonzero, the straight line through X(1) parallel to X'(t) is
called the tangent line to C at X(t). The vector X'(t) is called a tangent vector to C at X(1).

EXAMPLE |, Straight line. For a line given by X(¢) =P + r4, where 4 # O, we have
X'(t) = A, so the tangent line at each point coincides with the graph of X, a property which
we surely want.

EXAMPLE 2. Circle. If X describes a circle of radius @ and center-at a point P, then
| X(¢y — Pj = afor each t. The vector X(¢) — P is called a radius vector, it may be repre-
sented geometrically by an arrow from the center to the point X(¢}. Since the radius vector
has constant length, Theorem 14.2 tells us that it is perpendicular to its derivative and hence
perpendicular fo the tangent line. Thus, for a circle, our definition of tangency agrees
with that given in elementary plane geometry.

EXAMPLE 3. Jnvariance under a change of parameter. Different functions can have the
same graph. For example, suppose that X is a continuous vector-valued function defined
on an interval I and suppose that u is a real-vaiued function that is differentiable with '
never zero on an interval J, and such that the range of wis . Then the function ¥ defined
on J by the equation

Y(#) = X[u(0)]

is a continuous vector-valued function having the same praph as X. Two functions X

and Y so related are called equivalent, They are said to provide different parametric

representations of the same curve. The function  is said to define a change of parameter,
The most important geometric concepts associated with a curve arethose that remain-

invariant under a change of parameter. For example, it is easy to prove that the tangent
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" line Is invariant. If the derivative X'[i(8)] exists, the chain rule shows that Y'(1) also exists

and is given by the formula
¥(r) = XTu(e}u(®) -

The derivative #'(7) is never zero. If XTu(f)} is nonzero, then ¥'(f) is also nonzero, so Y'(¢
is parallel to X'{u(r)]. Therefore both representations X and ¥ lead to the same tangen
line at each point of the curve.

EXAMPLE 4. Reflection properties of the conic sections. Conic sections have reflectior
properties often used in the design of optical and acoustical equipment, Light rays emanat

- ing from one focus of an elliptical reflector will converge at the other focus, as shown ir

Tangent Tangent

Tangent

ST \

o

AV

\
(a) (b) (c)

Ellipse Hyperbola Parabola
FiGure 14.3  Reflection properties of the conic sections.

- Figure 14.3(a}. Light rays directed toward one focus of a hyperbolic refiector will con

verge at the other focus, as suggested by Figure 14.3(b}. In a parabolic reflector, light ray
parallel to the axis converge at the focus, as shown in Figure 14.3(c). To establish thes
reflection properties, we need fo prove that in each figure the angles labeled 8 are equal. Wi
shall do this for the ellipse and hyperbola and ask the reader to give a proof for the parabola

Place one focus F; at the origin and let #; and #, be unit vectors having the same direction

cas X and X — F,, respectively, where X is an arbitrary point on the conic. (See Figur

144) If dy = J X[ and &, = | X — Fyl are the focal distances between X and the foc
F; and F, , respectively, we have

X = dimy and X =dyu, + F,.

- Now we think of X, u,, u,, d,, and 4, as functions defined on some interval of real numbers

Their derivatives are related by the equations

= dlul + diug, X' = dguy + dynts .

Since u; and u, have constant length, each is perpendicular to its derlvatwe so Equation:

(14.5) give s X' -, = d] and X"+ u, = d,. Adding and subtracting these relations, wi
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find that
(14.6) X (g tu)=d+d, X (5,—m)=d —dj.

On the ellipse, &, + &, is constant, so d; + 4, = 0. On each branch of the hyperhola,

O=F, Fy 0=F Fy

() B;=nm 8, ontheellipse (b) 8, = 8, cu the hyperbola

TFraure 144 Proofs of the reflection properties for the ellipse and hyperbola,

d, — d, is constant, so d; — d, = 0. Therefore, Equations (14.6) give us

X'y +u)=0 on the ellipse, Xoo(u —u) =10 on the hyperbola.

Let T = X'/|| X"} be a unit vector having the same direction as X'. Then Tis tangent to the
conic, and we have

T,

—Tu on the ellipse, T uy=T-m on the hyperbola.

If 9, and 8, denote, respectively, the angles that T makes with &, and , , where 0 < 0, < 7
and 0 < 8, < m, these last two equations show that

cos B, = —cos §, on the ellipse, cos 8; = cos §; on the hyperbola.
Hence we have 8, = = — 0, on the ellipse, and 6, = 0, on the hyperbola. These relations

between the angles 6, and 8, give the reflection properties of the ellipse and hyperbola.

14.6 Applications to curvilinear motion. Velocity, speed, and acceleration

Suppose a particle moves in 2-space or in 3-space in such a way that its position at time:

t relative to some coordinate system is given by a vector X(¥). As t varjes (t_hrough a tim
interval, the path traced out by the particle is simply the graph of X. Thus, the vecto
valued function X serves as a natural mathematical model to describe the motion. We cal
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X the position function of the motion. Physical concepts such as velocity, speed, and
acceleration can be defined in terms of derivatives of the position function.

In the following discussion we assume that the position function may be differentiated
as often as is necessary without saying so each time,

DEFINITION.  Consider a motion described by a vector-valued function X. The derivative
X'(2) is cailed the velocity vector at time t. The length of the pelocity vector, |X'(1)|, is
called the speed. The second derivative of the position vector, X"(t), is called the acceleration
vector.

Notation. Sometimes the position function X s denoted by r, the velocity vector by o,
the speed by v, and the acceleration by @. Thus, v = ¥, v = [v], and a = v' = ¢".

If the velocity vector X'(¢) is visualized as a geometric vector attached to the curve at
X(t}, we sec that it lies along the tangent line. The use of the word “speed” for the length
-of the velocity vector will be justified in Section 14.12 where it is shown that the speed is the
rate of change of arc length along the curve. This is what the speedometer of an auto-
mobile tries to measure. Thus, the length of the velocity vector tells us how fast the par-
ticle is moving at every instant, and its direction tells us which way it is going. The
velocity will change if we aiter either the speed or the direction of the motion {or both). The
acceleration vector is a measure of this change. Acceleration causes the effect one feels
when an automobile changes its speed or its direction. Unlike the velocity vector, the
acceleration vector does not necessarily lie along the tangent [ine.

EXAMPLE |. Linear miotion. Consider a motion whose position vector is given by
r(t) = F + fl)d,

where P and A are fixed vectors, 4 0. This motion takes place along a line through
P parallel to 4. The velocity, speed, and acceleration are given by

W) = fOA4, o) = (0] = IO §AN, () = f7(0)4.

() and J"(r) are nonzero, the acceleration vector is parallel to the velocity.

EXAMPLE 2. Circular motion. 1f a point (x, y) in Vy is represented by its polar coordinates
-+ and 8, we have

x=rcosl, y=rsinf.

fris fixed, say r = a, and if 8 is allowed to vary over any interval of length at least 24,
the corresponding point (x, ¥) traces out a circle of radius a and center at the origin. 1If
~we make f a function of time ¢, say § = f{s), we have a motion given by the position function

p(f} = acos f(F + asinflt)f .
he corresponding velocity vector is given by

¥(t) = ¥'(t) = —af (1) sin f{r)i + af’ir) cos fit)f,
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from which we find that the speed at time ¢ is

o(t) = o]l = alf (D).

The factor [ f/(t)} = |d0/dt| is called the angular speed of the particle.

An important special case occurs when § == wf, where o (omega) is a positive constant,
In this case, the particle staris at the point (a, 0) at time + = 0 and moves counter-clockwise
around the circle with constant angular speed . The formulas for the position, velocity,
and speed become

)=acoswtitasinwlj, o(f) = —wasin wti + wa cos wt f, v(t) = aw .
The acceleration vector is given by
a(t) = —mla cos wii - wlasin ot j = —w%(t},

which shows that the acceleration is always directed opposite to the position vector. When
it is visualized as a geometric vector drawn at the location of the particle, the acceleration
vector is directed toward the center of the circle. Because of this, the acceleration is called
centriperal or “‘center-seeking,” a term originally proposed by Newton.

Note: If a moving particle has mass m, Newton’s second law of motion states that the
force acting on it (due to its acceleration) is the vector ma(r), mass times acceleration. If
the particle moves on a circle with constant angular speed, this is called & centripetal force
because it is directed toward the center. This force is exerted by the mechanism that
confines the particle to a circular orbit. The mechanism is a string in the case of a'stone
whirling in a slingshot, ot gravitational attraction in the case of a satellite around the
earth. The equal and opposite reaction (due to Newton's third {aw), that is, the force
—ma(l), is said to be cengrifugal or “center-fleeing.” .

EXAMPLE 3. Motion on an ellipse. Figure 14.5 shows an ellipse with Cartesian equation
x%fa? |- yfb* = 1, and two concentric circles with radii @ and 5. The angle § shown in

the figure is called the eccenriic angle. 1t is related to the coordinates (x, y} of a point on the
eilipse by the equations

x=acos0, y=nrhsinf.
As 8 varies over an interval of length 2w, the corresponding point (x, ) traces out the
ellipse. If we make 8 a function of time ¢, say ¢ = f{r), we have a motion given by the
position function

#(t) = acos f{1)i + bsinf(t)j.
If & = wt, where e is a positive constant, the velocity, speed, and acceleration are given by

p(1) = w(—asin wti -+ bcoswt]), o(t) = w(a® sin® wf + bB* cos? wi)E,

aft) = —w(acos wti -+ bsinw1f) = —w¥(t).
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(0.8) {x.3)

A (a,0)

pd

Froure 14.5 Motion on an ellipse. FicUrE 14.6 Motion on a helix.

* Thus, when a particle moves on an ellipse in such a way that its eccentric angle changes at a

constant rate, the acceleration is centripetal.

EXAMPLE 4. Motion on a helix. If a point (x, y, z) revolves around the z-axis at a constant
distance ¢ from it and simultaneously moves parallel to the z-axis in such a way that its
z-component Is proportional to the angle of revolution, the resulting path is called a

- circular helix. An example is shown in Figure 14.6. 1If 0 denotes the angle of revolution,

we have ’
{141 = gcos @, y=asinf, z =58,

where ¢ > 0, and & 5 0. When § varies from 0 to 2=, the x- and p-cocrdinates return to
their original values while z changes from 0 to 2mb. The number 2=b is often referred to

* as the pitch of the helix.

Now suppose that § = wf, where © is constant. The motion on the helix is then de-
scribed by the position vector

(1) = acos wfi + asin wfj+ botk
‘The corresponding velocity and acceleration vectors are given by
o{t) = —owa sin wt i + wa cos wt j + bwk, a(t) = —w*acos wti+ asin wij).

Thus, when the acceleration vector is located on the helix, it is parallel to the xy-plane and

irected toward the z-axis. .

If we eliminate 0 from the first two equations in (14.7), we obtain the Cartesian equation
¥t 4 * = a® which we recognize as the equation of a circle in the xy-plane. In 3-space,
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however, this equation represents a surface. A point (x, v, z) satisfies the equation if and
only if its distance from the z-axis is equal to @. The set of all such peints is a right circular
oylinder of radius a with its axis along the z-axis. The helix winds around this cylinder.

» »
4 .
P =1(cos§,sin @)

P (cosh §,sinh @)

14.7 Exercises 8 = twice the arca & = twice the area

of sector AOP of sector QAP
In each of Exercises 1 through 6, r(f) denotes the position vector at time ¢ for a particle moving P " s -3

on a space curve. In each case, determine the velocity o(¥) and acceleration a{f) in terms of 7, f, k; -
also, compute the speed o(f}.

1, r() = (3¢ — 3 + 3% + 3¢ -+ k. 4, p(f) = (t —sin t)t + (1 —cos A)f + 4sin - k :

2.0(8) =cos i+ sintj+ etk 5 M) = 3% + 26% - 3tk :

3. r(t) = 3rcost i+ 3tsintj + 4tk 6. r(f) =ti +sintf+ (1 —~ cos k.

7. Consider the helix described by the vector equation »{f) = acos wti 4 asin w!f + bwtk, * (a) Circle: x* + 3% =1 {(b) Hyperbola: x* — )? =1

where « is a positive constant. Prove that the tangent line makes a constant angle with the |
z-axis and that the cosine of this angle is b/v/a® + 5%

8. Referring to the helix in Exercise 7, prove that the velocity v and acceleration a are vectors o
constant length, and that

Fioure 14.7  Analogy between parameter for a circle and that for a hyperbola,

4. Prove that the tangent line at a point X of a parabola bisects the angle between the line
joining & to the focus and the line through X parallel to the axis. This gives the reflection
property of the parabola. (See Figure 14.3.)

. A particle of mass 1 moves in a plane according to the equation r(f} = x(Di + Wi, Tt is
attracted toward the origin by a force whose magnitude is four times its distance from the
origin. At time ¢ = 0, the initial position Is r(0) = 47 and the initial velocity i is #{(0) = 6/,

(a) Determine the components x(¢} and p(f) explicitly in terms of ¢

(b) The path of the particle is a conic section. Find a Cartesian equation for this conic,

sketch the conic, and indicate the direction of motion along the curve.

. A particle moves along the parabola x? + co(y — x) = 0 in such a way that the horizontal
- and vertical componenis of the acceleration vector are equal. If it takes T units of time te
go from the point {c, 0} to the point (0, 0), how much time will it require to go from {c, 0)
. to the halfway pomt (ef2, c/$)?

7. Suppose a curve C is described by two equivalent functions X and ¥, where ¥(z) = X [e{5)).

Prove that at each point of C the velocity vectors associated with X and ¥ are parallel, but
that the corresponding acceleration vectors need not be parallel.

e % al _a
iwl® a2 b

9. Referring to Exercise 7, lot u(f) denote the unit vector #(¢) = sin wi { — cos wij. Prove tha
there are two constants A and B such that v X a = Au(t) + Bk, and express 4 and B in
terms of g, b, and w.

10. Prove that for any motion the dot product of the velocity and acceleration is half the derivativ
of the square of the speed:

1d
vty a(h) = 7 v .

It. Let ¢ be a fixed unit vector. A particle moves in space in such a way that its position vecto
(1) satisfies the equation #{f) - ¢ = ¢* for all 1, and its velocity vector v(r) makes a constar
angle ¢ with ¢, where 0 < 8 < &=,

(a) Prove that the speed at time ¢ is 2¢% [cos .
{b) Compute the dot product a(¢) - v(¢) in terms of  and 8.

12. The identity cosh® 8 — sinh®# = 1 for hyperbolic functions suggests that the hyperbola

x*a® — y/b% = | may be represented by the parametric equations ¥ = acosh 0, y = bsinh 8
or what amounts to the same thing, by the vector equation r = g cosh 67 -+ & sinh 6 f. When
a = b =1, the parameter & may be given a geomeiric interpretation analogous to that which
holds between 8, sin 8, and cos 8 in the unit circle shown in Figure 14.7(a). Figure 14.7(b
shows one branch of the hyperbofa x* — p% = 1, If the point P has coordinates x = cosh
and y == sink 8, prove that 8 equals twice the area of the sector OAP shaded in the figure

4,8 The unit tangent, the principal normal, and the osculating plane of a curve

For linear motion the acceleration vector is parallel to the velocity vector, For circular
wwtion with constant angular speed, the acceleration vector is perpendicular to the velocity.
this section we show that for a general motion the acceleration vector is a sum of two
erpendicular vectors, one parallel to the velocity and one perpendicuiar to the velocity.
he motion is not linear, these two perpendicutar vectors determine a plane through each
oint of the curve called the osculating plane.

o study these concepts, we introduce the writ tangent vector 7. This is another vector-
glued function associated with the curve, and it is defined by the equation

[Hint: Let A{%) denote the area of sector QAP. Show that

A(6) = 4 cosh 8 sinh 8 — f :”*’“ N T
X0
1X*(0)i

never the speed | X'(#)]] #£ 0.. Note that || 7(#)|| = 1 for all 2.

¢ T =
Differentiate to get A°(9) = 4.1 ’
A particle moves along a hyperbola according to the equation r{#) = a cosh wr i + b sinh «

where w is a constant, Prove that the acceleration is centrifugal.

13,

(7Y
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THEOREM 14.9. For a motion described by a vector-valued function r, let o(t) denote the
speed at time t, o{t) = [[r'(t)|. Then the acceleration vector a is a linear combination of T
and T’ given by the formula

Figure 14.8 shows the position of the unit tangent geometric vector (¢} for various
values of ¢ when it is attached to the curve. As the particle moves along the curve, the
corresponding vector T, being of constant length, can change only in its direction. The
tendency of T"to change its direction is measured by its derivative T'. Since T has constant
length, Theorem 14.2 tells us that T is perpendicular to its derivative T”,

(14.8) at) = ¢ (OT) + o()T'() .
IfT'(t) = O, we also have
(14.9) a(t) = v (YT() + o(t) [T N(o).
Proof. The formula defining the unit tangent gives us
o(t) = v()T(¢}).
Differentiating this -product, we find that
at) = v(T(E) + o(T'(D),

which proves (14.8). To prove (14.9), we use the definition of N to write T'(z) =
LT v(o).

This theorem shows that the acceleration vector always lies in the osculating plane, An
~example is shown in Figure 14.10. The coefficients of T(¢) and N(t) in (14.9) are called,
-respectively, the tangential and normal components of the acceleration. A change in speed
“contributes to the tangential component, whereas a change in direction contributes to the
ormal component.

¢ For a plane curve, the length of T'(¢) has an interesting geometric interpretation. Since
T is a unit vector, we may write

X

FrGure 14.8  The unit tangent vector 7., FIGURE 14.9 The osculating plane.

If the motion is linear, then 7' = Q. If T’ 3 O, the unit vector having the same directio T(t) = cos a2} 4 sin alt)f,
as T is called the principal normal to the curve and it is denoted by N, Thus, N is a new . )
vector-valued function associated with the curve and it is defined by the equation a'l) <0

k H(I} = - N(f)

N = l—%% whenever | T'(f)] # 0.

a(r) decreasing
a'(fy > 0
u(t) = N(2)

- When the two unit geometric vectors () and N(¢) are attached to the curve at the poin

X(t), they determine a plane known as the esculating plane of the curve. If we choose thre
values of t, say #y, f3, and t3, and consider the plane determined by the three points X(#}
X(t.), X(t,), it can be shown that the position of the plane approaches the position of th
osculating plane at X(r,) as 7, and ¢y approach #, . Because of this, the osculating plane i
often called the plane that best fits the curve at each of its points, If the curve itself s

N

T = cos aft)i 4 sin alf)f
Osculating Plane

a(f) increasing

plane curve (not a straight line), the osculating plane coincides with the plane of the curve =y =
In general, however, the osculating plane changes with 7, Examples are illustrated ir
Figure 14.9, ;
The next theorem shows that the acceleration vector is a sum of two vectors, one paralle 1GURE 14,10 The acceleration vector lies Ficure 14,11 The angle of inclination of the
to T and one parallel to T7. in the osculating plane tangent vector of a plane curve.
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wlhere «(f) denotes the angle between the tangent vector and the positive x-axis, as shown
in Figure 14.11. Differentiating, we find that

T'(1) = —sin () ()i + cos aff) &'(1)j = o'(Du(t),

where w(t) is a unit vector, Therefore |T'()f = |a'(s)l and this shows that ()] s a
measure of the rate of change of the angle of inclination of the tangent vector. When
@'(1) > 0, the anglc is increasing, and hence u(f) = N{(#}. When o'() <0, the angle is
decreasing and, in this case, #{¢) = —N(r). The two cases are lustrated in Figure 14.11.
Note that the angle of inclination of u{r) is a(t) + 3 sihce we have

u(t) = —sin «(f)i + cos «(f)f = cos (m(!) -+ —Z)a 4 sin (ot(t) + 25)]

14.9 Exercises

Exercises 1 through 6 below refer to the motions described in Exercises 1 through 6, respectively,
of Section 14.7. For the value of ¢ specified, (a) express the unit tangent Tand the principal normal
Nin terms of 7, j, &; (b) express the acceleration @ as a linear combination of T and N,

1.1 =2, 3t=0, S5.t=1.
2,00 =, 4, = . 6.1‘:;1‘71'.‘
7, Prove that if the acceleration vector is always zero, the motion is linear..
8. Prove that the normal component of the acceleration vector is o x alifll»].
9, For each of the following statements about a curve traced out by a particle moving in 3-space,
cither give a proof or exhibit a counter example,
(a) If the velocity is constant, the curve lies in a plane,
(b) If the speed is constant, the curve lies in a plane.
(c) If the acceleration is constant, the curve lies in a plane.
(d) If the velocity is perpendicular to the acceleration, the curve lies in a plane. :
10. A particle of unit mass with position vector () at time ¢ is moving in space under the actions
of certain forces.
(a) Prove that r x @ = O implies r X v = ¢, where ¢ is a constant vector.
(b If ¢ % v = ¢, where ¢ is a constant vector, prove that the motion takes place in a plane
Conpsider both ¢ # O and ¢ = O.
{¢) If the net force acting on the particle is always directed toward the origin, prove that th
particle moves in a plane,
(d) Is r x v necessarily constant if a particle moves in a plane?
11. A particle moves along a curve in such a way that the velocity vector makes a constant angl
with a given unit vector ¢.
(a) If the curve lies in a plane containing ¢, prove that the acceleration vector is either Z8r
or parallel to the velocity.
(b) Give an example of such a curve (not a plane curve) for which the acceleration vecto
never zerc nor parailel to the velocity.
12. A particle moves along the ellipse 3x® + p* = 1 with position vector r() = f(2) + ()

The motion is such that the horizontal component of the velocity vector at time £ is —g(r)
(2} Does the particle move around the ellipse in a clockwise or counterclockwise directi
(b) Prove that the vertical component of the velocity vector at time ¢ is proportional fo fi
and find the factor of proportionality.
{©) How much time is required for the particle to go once around the ellipse?

13, A plane curve C in the first quadrant has a negative slope at each of its points and pa
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through the point (3, 1). The position vector r from the origin to any point {x,y) on C
makes an angle 6 with §, and the velocity vector makes an angle ¢ with §, where 0 < 8 < im,
and 0 < ¢ < 4= If 3tan ¢ = 4 cot 0 at each point of C, find a Cartesian equatjon for €
and sketch the curve,

. A line perpendicular to the tangent line of a plane curve is called a normal line. If the normal

line and a vertical line are drawn at any point of a certain plane curve C, they cut off a segment
of length 2 on the x-axis. Find a Cartesian equation for this curve if it passes through the
peint (1, 2). Two solutions are possible.

. Given two fixed nonzero veciors A and B making an angle & w1th each other, where 0 < 8 < =,

A motion with position vector r(¢} at time ¢ satisfies the differential equation
Flf) = A X r(f)

and the initial condition #(0) =

{a) Prove that the acceleration a(z} is orthogonal to A4,

(b) Prove that the speed is constant and compute this speed in terms of 4, B, and 6.

(c) Make a sketch of the curve, showing its relation to the vectors 4 and 8.

This exercise describes how the unit tangent and the principal normal are affected by a change
of parameter. Suppose a curve C is described by two equivalent functions X and ¥, where
¥{(#) = X[u(r)]. Denote the unit tangent for X by Ty and that for Y by Ty .

(a) Prove that at each point of C we bave T-(f) = Tx[#(0)]if « is strictly increasing, but that
Ty (#) = —Tx [} if u is strictly decreasing. In the first case, u is said to preserve orientation;
in the second case, u is said to reverse orientation,

(b) Prove that the corresponding principal normal vectors Ny and Ny satisfy Ny(1) =
Ny[u(#)] at each point of C. Deduce that the osculating plane is invariant under a change of
parameter.

14.10 The definition of arc length

Varjous par{s of calculus and analytic geometry refer to the arc length of a curve. Before
we can study the properties of the length of a curve we must agree on 4 definition of arc
Jength. The purpose of this section is to formulate such a definition. This will lead, in a
natural way, to the construction of a function (called the arc-length function) which
casures the length of the path traced out by a moving particle at every instant of its
otion. Some of the basic properties of this function are discussed in Section 14.12. In
particular, we shall prove that for most curves that arise in practice this fLiI’lCthI‘J. may be
pressed as the integral of the speed.

To arrive at a definition of what we mean by the length of a curve, we proceed as though
: had to measure this ength with a straight yardstick. First, we mark off a number of
ints on the curve which we use as vertices of an inscribed pelygon. (An example is
own in Figure 14.12.) Then, we measure the total length of this polygon with our yard-
ck and consider this as an approximation to the length of the curve. We soon observe
that some polygons “fit” the curve better than others.
lygon Py , and construct a new inscribed polygon P, by adding more vertices to those of P, ,
is clear that the length of P, will be larger than that of P;, as suggested in Figure 14.13.
‘the same way we can form more and more polygons with successively larger and larger
igths.

On the other hand, our intuition tells us that the length of any inscribed polygon should
t exceed that of the curve (since a straight line is the shortest path between two points),

In particular, if we start with a
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Jor all partitions P of [a, b], then the curve is said to be rectifiable and its arc length, denoted

by Ala, b), is defined to be the least upper bound of the set of all numbers |={F)|. If there is
no such M, the curve is called nonrectifiable,

Tn other words, when we arrive at a definition for the length of a curve, it should be a
number which is an upper bound to the lengths of all inscribed polygons. Therefore, it
certainly seems reasonable to define the length of the curve to be the least upper bound
of the lengths of all possible inscribed polygons.

For most curves that arise in practice, this definition gives us a useful and reasonable
way to assign a length to a curve. Surprisingly enough, however, there are certain patho-
logical cases where this definition is not applicable. There are curves for which there is
no upper bound fo the lengths of the inscribed polygons. (An example is given in Exercise

Note that if an M exists satisfying (14.10), then, for every partition P, we have
(14.11) \ |m(P) < Aa, b) < M,

since the least upper bound cannot exceed any upper bound.

FIGURE 14.12 A curve with an in- Fiourg 14,13 The polygon ABC has a
scribed polygon. length greater than the polygon AC.
a b
22 in Section 14.13.) Therefore it becomes necessary to classify all curves into two cate- f . 1 T T ; ® -y
gorjes: those which have a length, and those which do not. The former are called rectifiable ’ v : ! sk /

curves, the latter, nonrectifiable.

To formulate these ideas in analytic terms, we begin with a curve in 3-space or in 2-space
described by a vector-valued function r, and we consider the portion of the curve traced
out by r(¢) as ¢ varies over an interval [¢, b]. At the outset, we only assume that # is contin-
uous on the parametric jaterval. Later we shall add further restrictions.

Consider now any partition P of the interval [a, b], say

Figure 14,14 A partition of [a, b] into six subintervals and the corresponding
inscribed polygon.

1t is easy to prove that a curve is rectifiable whenever its velocity vector v is continuous
on the parametric interval [a, b]. In fact, the following theorem tells us that in this case we
P={tg,ty, ...y lul, where a=f <t < ' <t,=5b. may use the integral of the speed 2s an upper bound for all numbers |#(P)|.
Denote by #(P) the polygon whose vertices are the points r(t5), r(2), . . . , #{1,), respectively.

{(An example with n = 6 is shown in Figure 14.14.) The sides of this polygon have lengths THEOREM 14.10.  Denote by n(r) the velocity vector of the curve with position vector #(t)

and let o(t) = ||o(1)|} denote the speed. If v is continuous on [a, bl, the curve is rectifiable and

115D — s I = KD -+ » () — Pt s length Ma, b) satisfies the inequalily

: b
Therefore, the length of the polygen 7(F), which we denote by [=(£), is the sum (14.12) Ma, b) < L vt} di .

” - Progf. For each partition P of [g, &], we have
|7 P)] =k§1""(tk) — (bl -

7 n tx
: i =S it it = 5 [ vy e
DEFINITION, If there exists @ positive number M such that = - k§1 te ®
k) i E % &
(14.10) =P < M I‘Zﬂ L_lvt) < ;Z‘l . (D)l dr uv(t) dt,
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Next we prove the reverse inequality. We begin with any partition P of {a, 5]. If we

i i i h 14.8. This shows that we have s . . .
the inequality being a consequence of Theorem 5 shows Hial we fa adjoin the peint c to P, we obtain a partition P, of [a, c] and a partition P, of [¢, &] such that

[

P o(f) dt
IR () < (P + im(Pl < Ae,¢) + Ale, ).
for all partitions P, and hence the number jg v(r) dt is an upper bouru:_i for the set of all
numbers |«(P)|. This proves that the curve is rectifiable and, at the same time, it tells us
that the length A(a, b) cannot exceed the integral of the speed.

This shows that A(a, ¢) + Ale, b) is an upper bound for all numbers j«(P)|. Since this
cannet be Jess than the least upper bound, we must have

. . o Aa, ) < Ala, o) + Ale, b).
In a later section we shall prove that the inequality in {(14.12) is, in fact, an eguality

The proof of this fact will make use of the additivity of arc length, a property described in This inequality, along with (14.14), implies the additive property.
the next section. )

14.11 Additivity of arc length 1412 The arc-length function

Suppose a curve is the path traced out by a position vector #{f). A natural question to ask
isthis: How far has the particle moved along the curve at time ¢ To discuss this question,
‘we introduce the arc-length function 5, defined as follows:

If a rectifiable curve is cut into two pieces, the length of the whole curve is the sum of the
lengths of the two parts, This is another of those “intuitively obvious™ statements whose
proof is not trivial. This property is called additivity of arc lengthi and it may be expressed
analytically as follows.
anaiyucally s =Aa,6) i t>a,  s@=0.

THEOREM 14.11.  Consider a rectificble curve of length Aa, b) traced out by a vector
#(t) as t varies over an interval [a, b). If a < ¢ < b, let C, and C; be the curves traced out by
#(t) as t varies over the intervals [a, i and [c, b], respectively. Then Cy and Cy are also rectifiable
and, if A(a, ¢) and Alc, b denote their respective lengths, we have

he statement s(a) = 0 simply means we are assuming the motion begins when ¢ = a.
The theorem on additivity enables us to derive some important properties of 5. For
xample, we have the following.

Ala, b) = Ala, o) + Ale, b). 'THEOREM 14.12. - For any rectifiable curve, the arc-length function s is monotonically
_c_reast'ng on [a, b]. That is, we have
Proof. Let P, and P, be arbitrary partitions of [g, ¢] and [¢, 5], respectively. The point

in P; taken together with those in P, give us a new partition P of [a, b] for which we hay,

15) () <o) i a<n < <h.

(14.13) lm(Py)| + {7(Py)] = [#(F)] < Ala, b). oof. 1fa <1y <ty < b, we have
This shows that [7(P;)| and |[7{P,)| are bounded by A{a, 5), and hence €, and C, ar s(ty) — s(t) = Aa, 1) — Aa, 1) = Alty, 1),
rectifiable. From (14.13), we also have

re the last equality comes from additivity. Since A(1,, 1,) > 0, this proves {14,15).
[#(PD)] £ Ala, B) — [=(Py)l . _ '
ext we shall prove that the function s has a derivative at each interior point of the

Now, keep P, fixed and jet P, vary over all possible partitions of [a, ¢]. Since the numbg metric interval and that this derivative is equal to the speed of the particle.

Ala, ) — |7(Py)| is an upper bound for all numbers |w(P,)|, it cannot be less than t
least upper bound, which is A{g, ¢). Hence, we have A(g, ¢) £ Ala, b)Y — [#(P;)] or, wha
is the same thing,

THEOREM 14.13. Lef s denote the arc-length function associated with a curve and let

t} denote the speed at time 1. If v is continuous on {a, b], then the derivative s'(t) exists Jor
ch ¢ in (a, b) and is given by the formula

lm(Po)l < Ada, b) — Alg, c).

This shows that Afa, &) — A{a, ¢) is an upper bound for all the sums tr(P)], and since ]
cannot be fess than their least upper bound, A(c, b), we have Alc, b) < Ala, b) — Alg, ¢
In other words, we have

6) ‘ (1) = oft).

(14.14) Aa, &) + Ale, b) < Am, b).
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difference quotient

m+m—mw_

(14.17)

Suppose first that & > 0. The line segment joining the points #{t) and r(f + /) may b
thought of as a polygon approximating the arc joining these two points. Therefore,
because of (14.11), we have

fr(t + By — v KA+ B) = st + 1) —s(2).
Using this in (14.17) along with the inequality (14,12) of Theorem 14.10 we have

(AR L[ g, SEER =IO,
h Itde

Wt 4 B — #(D)
h .

A similar argument shows that these inequalities are also valid for £ < 0. If welet h—90
the difference quotient on the extreme left approaches [#(#)| = o(¢) and that on the
extreme tight approaches f'(r) = v(t), It follows that the quotient fs(r + A) — s{t))ik
alse approaches (). But this means that 5'(¢) exists and equals v(t), as asserted.

Theorem 14.13 conforms with our intuitive notion of Speed as the distance per unit time
being covered during the motion.

Using (14.16) along with the second fundamentaj theorem of calculus, we can comput
arc length by integrating the speed. Thus, the distance traveled by a particle during a tim

interval [#;, #,] is
23 1z
s(ty) = sty =, 0 dt =], ogo) .

In particular, when f, = @ and f, = b, we obtain the following integraf for arc length:

b
Ata, ) =] o) ds

EXAMPLE 1. Length of a circular are. To compute the length of an arc of a circle o

radius g, we may imagine a particle moving along the circle according to the equation

r(fy =a costi+ asintj. The velocity vector is () = ~a sint¢f 4 acostj and the

speed is v(?) = a. Integrating the speed over an interval of length §, we find that the length

of arc traced out is af, In other words, the length of a circular arc is proportional to the
angle it subtends; the constant of propertionality is the radius of the circle. For a umi
circle we have a = 1, and the arc length is exactly equal to the angular measure.

EXAMPLE 2. Length of the graph of a real-valued function. The graph of a real-valued

function f defined on an interval [a, b} can be treated as a curve with position vector #(f
given by ‘
He) = ti + fi)

The corresponding velocity vector is o(f) = { + f'(f)j, and the speed is

o(t) = ol = Vi + I (OF .
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herefore, the arc length of the graph of f'above a subinterval {a, x] is given by the integral

418) s =L ar=["Vi+ rofar,

4.13 Exercises

“In Exercises | through 9, find the length of the path traced out by a particle moving on a curve
ccording to the given equation during the time interval specified in each case.

S Lor() = a(l — cos i + a(t — sin £, 0<t£2m a>0.

L) =etcosti + et sin L], 0<r <2,

. #(f) = alcos ¢ + £s8in 1) + a(sin ¢ — £ cos 1)), 0t <2 a>0.

] v

¢ c
.r(t)=';cos"ti+gsin3rj, 0<t<€2n, =gt —p, 0<b<a

. K({) = a(sinh f — ) +alcoshe — 1), 0<t<T a3>0.

L t(f) =sinti4+of+ (1 —cosk (0 <t <2m).

O =i+ 3 6Pk (0L

Mt} =t i+ log (sec Af + log (sec £ -+ tan H& 0 <t <im.

. Mt} = acos wii + asin wtf -+ bwk (e <t < 1)

. Find an integral similar to that in (14.18) for the length of the graph of a2n equation of the

form x = g()), where g has a continuous derivative on an interval {c, d].

. A curve has the equation y® = »®, Find the length of the arc joining (1, —1) to (I, 1).
. Two points A and B on a unit circle with center at O determine a circular sector A0B. Prove

that the arc A8 has a length equal to twice the area of the sector.

. Set up integrals for the lengths of the curves whose equations are (a) y = e, 0 < x < 1;

(M) x =t+logt, y=t—logt, 1 £t < e Show that the second Jength is /2 times the
first one.

. (a) Set up the integral which gwes the length of the curve y = ¢ cosh (x/c) from x =0 to

x=ala>0,¢>0)
(b} Show that ¢ times the length of this curve is equal to the area of the region bounded by

"y = ccosh (xfc), the x-axis, the y-axis, and the line x = a.

{c) Evaluate this integral and find the length of the curve when g = 2,

. Show that the fength of the curve y = cosh x joining the points {0, 1} and {x, cosh x) is

sinh x if x > 0.

. A nonnegative function f has the property that its ordinate set over an arbitrary interval has

an area proportional to the arc Eength of the graph above the interval. Find £

. Use the vector equation #{(r) = asin¢i + bcos ¢j, where 0 < b < @, to show that the cir-
: cumference L of an ellipse is given by the integral

L= 4af;"2\/ | st de,

: where ¢ = 4/a% — b%/g. (The number e is the eccentricity of the ellipse.) This is a special case

of an integral of the form

E(R) = fu”’”vl et tdr,

called an elliptic integral of the second kind, where 0 < & < 1, The numbers E(k) have been
abulated for various values of &.
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18.

19,

20,

22.

HO<h <4a et r(f) =alt —smHi +all —cost)j +b sin 3t k. Show that the length of
2w is BaE(k), where E(k) has the meaning given in

the path traced out from s =0to ¢ =
Exercise 17 and £2 = 1 — (b/4a)%
A particle moves with position vector

#f) =14 + 2B + 2352 4 X B,

where 4 and B are two fixed unit vectors making an angle of =/3 radians with each other,
Compute the speed of the particle at time ¢ and find how long it takes for it to move a distance

of 12 upits of arc length from the initial position r(0),

(a) When a circle rolls (without slipping) along a straight line, 2 point on the circumference
teaces out a curve called a epeloid. If the fixed line is the x-axis and if the tracing point (x, y)

is originally at the origin, show that when the circle rolls through an-angle 6 we have
x = a(f —sin ), y =a(l —cos 6},

where ¢ is the radius of the circle. These serve as parametric equations for the cycloid.

(b) Referring to part {a), show that dy/dx = cot 36 and deduce that the tangent line of the
cycloid at (x, p) makes an angle (= — 8) with the x-axis. Make a sketch and show that the

tangent line passes through the highest point on the circle.

. Let C be a curve described by two equivalent functions X and Y where Y{r) = X[u()] for
¢ <t <d. 1If the function i which defines the change of parameter has a continuous deriv-

ative in [¢, d] prove that

[ ixkde = [*Lreonar,

and deduce that the arc length of C is invariant under such a change of parameter.
Consider the plane curve whose vector equation is /(1) = # + f(£)f, where

£ = tcos (21;) it t£0, f0)=0.
Consider the following partition of the interval [0, 11:
Fa 0 i1 1
- ] ) 3 » 3 . .

Show that the corresponding inscribed polygon =(#} has length

1 1
2 — 17777

1

Tl
[P > 15 +5+ -+

and-deduce that this curve is nonrectifiable.

14.14 Curvature of a curve

For a straight line the unit tangent vector T does not change its direction, and hence
T = 0. Tf the curve is not a straight line, the derivative T’ measures the fendency of the
tangent to change its direction. The rate of change of the unit tangent with respect to arc

-length is called the curvature vector of the curve. We denote this by dT/ds, where s repre-
-sents arc length. The chain rule, used in conjunction with the relation s'(t) = (¢}, tells us
that the curvature vector d7/ds is related fo the “time” derivative T’ by the equation

dT _ dtdT _ 1 .,
E=2§E_s(t) T'(t) = () T'(1).
“Since T'(¢) = [|T'(t)]| N(?), we obtain
{14.19) c;i: - Ili;(g)ll N

“which shows that the curvature vector has the same direction as the principal normal N(z).
~The scalar factor which multlphes N(f}y in (14.19) is a nonnegative number called the
“eurvature of the curve at ¢ and it is denoted by x(#) {« is the Greek letter kappa). Thus the
_(f:urvat]ure w(t), defined to be the length of the curvature vector, is given by the following
ormula:

(14.20) oy = LTOL
vt}
E.XAMPLE L. Curvature of a circle. For a circle of radius a, given by #(¢) = acos 1§ +
wa sin tf, we have v(t) = —asin i acos i, ot} = a, T(t) == —sin ri - cos ¢j, and
T'(t) = —cos ti— sint j. Hence we have [T'(1)|| = 1 so w(#) = 1/a. This shows that a

icircle has constant curvature. The reciprocal of the curvature is the radius of the circle.

When () 5 0, its reciprocal is called the radius of curvature and is denoted by p(r)
e is the Greek letter rho). That circle in the osculating plane with radius p(¢) and center
at the tip of the curvature vector is called the osculating circle. It can be shown that the
sculating circle is the limiting position of circles passing through three nearby points on
he curve as two of the points approach the third. Because of this property, the osculating
ircle is often called the circle that “best fits the curve” at each of its points.

“EXAMPLE 2. Curbature of a plane curve. For a plane curve, we have seen that §T"(t)|| =
a'(1)], where a{t) is the angle the tangent vector makes with the positive x-axis, as shown
o Figure 14.11. From the chain rule, we have «'(1) = dofdt = (da/ds)(dsjdt) = v(t)de/ds,
o Equation (14.20) implies

do

ds

() =

r other words, the curvature of a plane curve is the absolute value of the rate of change of
with respect to arc length. It measures the change of direction per unit distance along the
urve,

EXAMPLE 3. Plane curves of coastant curvature, If dafds is a nonzero constant, say
ofds = a, then o = as -~ b, where b is a constant. Hence, if we use the arc length 5 as
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a parameter, we have T = cos (as + b)Y + sin {as + B)J. Integrating, we find that #
(1/a) sin (as + B)i — (1fa) cos (us + B)f + 4, where 4 is a constant vector. Therefore
lF — Al = 1/|ai, so the curve is a circle {or an arc of a circle) with center ai 4 and radius
1/la). This proves that a plane curve of constant curvature « 7 0 is a circle {oranarcof a
circle) with radius 1{«. :

Now we prove a theorem which relates the curvature to the velocity and acceleration.

THEOREM 14.14.  For any motion with velocity u(t), speed v(t), acceleration a(t), and
curvgiure «(t), we have

(14.21) a(i) = v'(OT(r) + «(OV(ONCE) .
This formula, in twrn, implies

la(t) x »(n)]

14.22 D)=
(14.22) w(1) 70

Proof. To prove (14.21), we rewrite (14:’7.0) in the form § 7(8)|] == «{)e(r), which gives us
T'(t) = w(t)o(f)N(7). Substituting this expression for I"(¢) in Equation (14.8), we obtain
{14.21). ) _

To prove {14.22), we form the cross product a(f) x »(¢), using (14.21) for «(¢) and the
formula vz} = v($)T{¢) for the velocity.” This gives us

(14.23) axX 8=t X T+ xt® N X T=xt?NxT

since T x T = (. If we take the length of each member of (14.23) and note that
IN x Tl = §N§ 4T sin g = 1,

we obtain |j@ X ¢l = «v*, which proves (14.22).

In practice it is fairly easy to compute the vectors » and a (by differentiating the position
vector r); hence Equation (i4.22) provides a useful method for computing the curvature,
This method is usually simpler than determining the curvature from its definition.

For a straight line we have @ X v = O, so the curvature is everywheré zero. A curve
with a smali curvature at a point has a large radius of curvature there and hence does not
differ rauch from a straight line in the immediate vicinity of the point., Thus the curvature
is a measure of the tendency of a curve to deviate from a straight line,

14.15 Exercises

1. Refer to the curves described in Exercises { through 6 of Section 14,9 and in each case determine
the curvature «(r) for ihe value of ¢ indicated.

2. A helix is described by the position function r(t) = a cos wt i + asin wfj + bwtk. Prove that
it has constant carvature « = af(a® + 5%).
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3. Two fixed unit vectors 4 and B make an angle 6 with each other, where 0 < 8 < #, A
particle moves on a space curve in such a way that its position vector () and velocity (£
are related by the equation o{f) = A4 x r(f). If »(0) = B, prove that the curve has constant
curvature and compute this curvature in terms of @,

4, A point moves in space according to the vector equation

)y =4dcosti +4dsintj-+4costk.

(a) Show that the path is an ellipse and find a Cartesian equation for the plane containing
this ellipse, :
{(b) Show that the radius of curvature is p{f) = 22 (1 + sin® %2,

5. For the curve whose vector equation is r(f) = et + ¢4 + V2t k, show that the curvature is
Kf) = V2f(e + e

6. (a) For a plane curve described by the equation r(f) = x(1)i + p(r)j, show that the curvature
is given by the formula

[y () — y ="
{Ix'OF + [yOFF* "

K(t) =

(b) If a plane curve has the Cartesian equation y = f(x), show that the curvature at the point
(x, fx)) Is
e
{4+ [FEFPRR-

7. If a point moves so that the velocity and acceleration vectors always have constant lengths,
prove that the curvature is constant at all points of the path. Express this constant in terms
of llall and [oll. :

8. If two plane curves with Cartesian equations y = f(x) and y = g(x) have the same tangent
at a point (4, b} and the same curvature &t that point, prove that |f“(a)| = |g“(a)l.

9, For certain values of the constanis ¢ and b, thé two curves with Cartesian equations y =
ax(b — x) and (x + 2)y = x intersect at only one point £, have a comman tangent line at 2,
and have the same curvature at P.

(a) Find alf @ and b which satisfy all these conditions.
(b) For each possible choice of a and b satisfying the given conditions, make a sketch of the
two curves. Show how they intersect at P.

:10. (a) Prove that the radius of curvature of a parabola is smallest at its vertex.

(b) Given two fixed unit vectors 4 and B making an angle ¢ with each other, where 0 < 0 < o,
The curve with position vector #(r) = 74 + *B is a parabola lying in the plane spatned by
Aand B. Determine (in terms of 4, B, and 8} the position vector of the vertex of this parabola.
You may use the property of the parabola stated in part (a).

“11, A particle moves along a plane curve with constant speed 5. Tt starts at the origin at time

£ =0 with initial velocity 5/, and it never goes to the left of the y-axis. At every instant the
curvature of the path is «(f) = 2t. Let «(f) denote the angle that the velocity vector malkes
with the positive x-axis at time z,

(a} Determine «(#) explicitly as a function of 2.

(b) Determine the velocity (¢} in terms of # and §.

12, A particle moves along a plane curve with constant speed 2. The motion starts at the origin

when ¢ = 0 and the initial velocity »(0) is 27. At every instant it is known that the curvature
«(f} = 4r. Find the velocity when ¢ = 14/7 if the curve never goes below the x-axis.
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14.16 Velocity and aceeleration in polar coordinates Now suppose the polar coordinates r ahd 0 are functions 6f t, say r = f{t), 6 = g(1).

We shall derive farmulas for expressing the velocity and acceleration in terms of #, and

metimes it is more natural to descri i n a pla inat -
Sometimes it al t ibe the points on a plane curve by polar coordinates u, . For the position vector, we have

rather than rectangular coordinates. Since the rectangular coordinates (x, y) are related to
the polar coordinates r and § by the equations : .
r=ru, = f(t), .
x=rcosf, y=rsinfl,

Since § depends on the parameter ¢, the same is true of the unit vector z, and we must take

, y this inte account when we compute the velocity vector. Thus we have
l ;
i, d
oo dr_dom) _dr . du,
u, dt dt dat dt
. Using the chain rule, we may express du,/ds in terms of #, by writing
L
0
o - = (14.24) du _dodw, _ &8,
¥= Xxi4+ ¥ ¥ dt dt 48 dt
W 1 . :
. ” |_y=rsin o and the equation for the velocity vector becomes
)
9\ x=rcos !
- =X ‘
d
7 _ 0 | (14.25) vzj;u,,+ ri@uﬂ.
Fiqurk 14.15 Polar coordinates. FiGURE 14.16 The unit vectors n, and #,.

The scalar factors drjdt and rdfi/dt multiplying u. and w, are called, respectively, the
‘radial and transverse corponents of velocity.

Since u, and #, are orthogonal unit vectors, we find that

vl
vm=@g+@@ﬁ
di/ \ dt

80 the speed v is given by the formula

= JET (2
°= (dt)+ Tatl

Differentiating both sides of (14.25}, we find that the acceleration vector is given by

the position vector r = xi + yj joining the origin to (x, y) is given by
r=rcosfi+rsinfj=r(cos0i+sinfj),

where r = ||#f. This relation is fllustrated in Figure 14.15.
The vector cos 87 + sin 8 is a vector of unit length having the same direction as r.
This unit vector is usually denoted by u, and the foregoing equation is written as follows:

¥ o= ru, where n,=cos0i+sinfj.

It is convenient to introduce also a unit vector u, , perpendicular to u_, which is defined as
follows:

u9=%=——sin6i+cos&j. 7 i 7 P ’
= {27 ar du, . r df d
a—(d:”uT dt:i"r_)+(r_ue+—_—"”+._"ﬂ)'

Note that we have dr? dt dt J dr dt

duty
46

= ~cosfi—sinbj= —u,. he derivative du,/dr may be expressed in terms of u, by (14.24). We may similarly express

I;_e derivative of #, by the eguation

In the study of plane curves, the two unit vectors u, and , play the same roles in polai
coordinates as the unit vectors i and j in rectangular coordinates. Figure 14.16 showst

dug _ db duy 40
unit vectors #_ and u, atiached to a curve at some of its points.

dr dt 468 dt

u, .
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This leads to the following formula which expresses 4 in terms of its radial and transverse
components:

&% (de ) ( 40 dr df))
_{— 2__
(14:26) ? (dt?‘ g dt + dst ar T de dt -

When # = 1, the curve may be described by the polar equation r = f{0). In this case, the
formulas for velocity, speed, and acceleration simplify considerably, and we obtain

_dr _ /(ﬂ)” 2 =(d_*r_) 5 dr
v—dﬁur—l-mg, v = d6+r, a 16t rlu, 4 dﬂu

14.17 Plane miotion with radial acceleration

The acceleration vector is said to be radial if the transverse component in Equation
(14.26) is always zero. This component is equal to

40 pdrdd 1 d(rzd_e)
" Ca@rar vt '
Therefore, the acceleration is radial if and only if r? d/dr is constant.

Plane motion with radial acceleration has an interesting geometric interpretation in
terms of area, Denote by 4(z) the area of the region swept out by the position vector from
a fixed time, say f = a, to a later time 2. An example is the shaded region shown in Figure
14.17. We shall prove that the time rate of change of this area is exactly equal to }r? dfl/dr.
That is, we have

- l 2 dt
14.27) A'(D) -

From this it follows that the acceleration vector is radial if and only if the position vector
sweeps out area at a constant rate.

To prove (14.27), we assume that it is possible to eliminate ¢ from the two equations
r = f(1), # = g{t), and thereby express r as a furction of §, say r = R(f).. This mearns that
there is a real-valued function R such that R{g(#)] = f(r). Then the shaded region in Figure
14.17 is the radial set of R over the interval [g{a), g(t}]. By Theorem 2.6, the area of this
region is given by the integral ) ‘

(2
Aty = L | RNE)do.

Differentiating this integral by the first fundamental theorem of calculus and the chain

rule, we find that
1 , 1 4d8
A() = FRUOI® = 3 P00 =55

de’
which proves (14.27).
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1418 Cylindrical coordinates

If the x- and y-coordinates of a point P = {(x, y, z) in 3-space are replaced by polar

* coordinates r and 6, then the three numbers #, 0, z are called cplindrical coordinates for
" the point P. The nonnegative number » now represents the distance from the z-axis to

the point P, as indicated in Figure 14.18. Those points in space for which r is constant are
at a fixed distance from the z-axis and therefore fie on a circular cylinder (hence the name

. cplindrical coordinates).

Area = A(D)

x
Fioure 14.17 The position vector sweeps Froure 14.18  Cylindrical coordinates.

1
out area at the rate A(t) = =3 r?— e

To discuss space curves in cylindrical coordinates, the equation for the position vector
» must be replaced by one of the form

r=ru, + z2(0)k .

Corresponding formulas for the velocity and acceleration vectors are obtained by merely
adding the terms z'(1)k and z"(f)k, respectively, to the right-hand members of the two-

- dimensional formulas in (14.25) and (14.26).

14.19 Exercises

1. A particle moves in a plane so that its position at time ¢ has polar coordinates r = ¢, 8 = ¢,
Find formulas for the velocity v, the acceleration g, and the curvature « at any time 2.

2. A particle moves in space so that its position at titne ¢ has cylindrical coordinates + =1,
0 =t,z = £ It traces out a curve called a corical helix.
(a) Find formulas for the velocity », the acceleration a, and the curvature « at time ¢.
(b) Find a formula for determining the angle between the velocity vector and the generator
of the cone at each point of the curve.

3. A particle moves in space so that its position at time # has cylindrical ceordinates r = sin ¢,
0 =t z=logsect, where 0 <1 < ir
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(a) Show that the curve lies on the cylinder with Cartesian equation x% + (y — —é—)‘f =1,
{b) Find a formula (in terms of ) for the angle which the velocity vector makes with &.
4, If a curve is given by a polar equation r = f(8), where @ < ¢ <b < a + Zm, prove that its

arc length is
2 _—
L r? + (de) a8,

5, The curve described by the polar equation r =a(l +cosf), where a >0and 0 < 6 < 2n,

is called a cardiod. Draw a graph of the cardiod = 4(1 + cos 6) and compute its arc length.

6. A particle moves along a plane curve whose polar equation is r = e*, where c is a constant

and & varies from 0 to 2Zn.

{a) Make a sketch indicating the general shape of the curve for each of the foliowing values

ofci ¢ =0,c=1,c=—1L

(b) Let L(c) denote the arc length of the curve and let a{c) denote the area of thc? region swept

out by the position vector as @ varies from 0 to 2w, Compute L{c) and a(¢) in terms of c.
7. Sketch the curve whose pelar equation isr =sin?46, 0 < 8 £ 2w, and show that it consists

of twoe loops.

{a) Find the area of region enclosed by one loop of the curve,

{b) Compute the length of one loop of the curve. ‘ )

In each of Exercises 8 through 11, make a sketch of the plane curve having the given polar
equation and compute its arc length. 7

8.r=10 0£6<w 10. r =1 +cos 6, 0<8 <

9. 5 = g, 0<0 < 11, p=1—cosf, . 0<8<2w

12. If & curve has the polar equation r = f(8}, show that its radius of curvature p is given by the .
formula p = (2 + r'232r? — pr* + 2r%|, where r* = (8} and ¢ = f7(6).

13, For each of the curves in Exercises 8 through 11, compute the radius of curvature for the "
value of 0 indicated.

{(a) Arbitrary § in Exercise 8. (¢) 6 = ir in Exercise 10.
(b} Arbitrary 8 in Exercise 9. (d) 6 = 1z in Exercise 1. )

14, Let ¢ denote the angle, 0 < ¢ < =, between the position vector and the velocity vector of
curve. If the curve is expressed in polar coordinates, prove that vsin ¢ = r and vcos¢ =
drfdd, where v is the speed. ) ) o

15. A missile is designed to move directly toward its target. Due to mechanical fatiure, its dir
tion in actual flight makes a fixed angle « # O with the line from the missile to the target
Find the patk if it is fired at a fixed target. Discuss how the path varies with «. Does
missile ever reach the target? (Assume the motion takes place in a plane.)

16. Due to a mechanical failure, a ground crew has lost control of a missile retently fired. It
known that the missile will proceed at a constant speed on a straight course of unkno
direction. When the missile is 4 miles away, it is sighted for an instant and lost again. Imm
diately an anti-missile missile is fired with a constant speed three times that of the first mjss
What should be the course of the second missile in order for it to overtake the first on
(Assume both missiles move in the same plane.) _

17. Prove that if a homogeneous first-order differential equation of the form y" = f(x, y) i
written in polar coordinates, it reduces to a separable equation. Use this method to.50

y o= - Dy +x.

18. A particle {(moving in space) has velocity vector v = wk x r, where o is a positive con
and r is the position vecior. Prove that the particle moves a]ong a circle with constant
speed @. (The angular speed is defined to be \d8{dt}, where 0 is the polar angle at tim
. A particle moves in a plane perpendicular to the z-axis. The motion takes plac

circle with center on this axis.

(a) Show that there is a vector w(y) paraliel to the z-axis such that
o{f) = &) x 1D,

where r(£) and v{¢) denote the position and velocity vectors at time . The vector w(f) is called
the angular velocity vector and its magnitude w(f) = [w(r)} is called the angular speed.

(b} The vector «(f) = w'(¢) is called the angular acceleration vector. Show that the accelera-
tion vector a(z) [= »'(£)] is given by the formula

a(ty = [wa(r) - r()](l) — w®@r(f) + alt) x K1) .

(c) If the particle lies in the xp-plane and if the angular speed (/) is constant, say w(f) = w,
prove that the acceleration vector a(f) is centripetal and that, in fact, a(f) = —w® ().

20. A body is said to underge a rigid motion if, for every pair of particles p and ¢ in the body,
the distance [I7,(1) — r (il is independent of 7, where r,(¢} and r,{*) denote the Pposition vectors
of p and g at time ¢. Prove that for a rigid motion in which each particle p rotates about
the z-axis we have v,{f) = w(r} x r,(f), where w(¢) is the same for each particle, and ¢,{) is
the velocity of particle p.

1420 Applications to. planetary motion

By analyzing the veluminous dafa on planetary motion accumulated up to 1600, the

German astronomer fohannes Kepler (1571-1630) tried to discover the mathematical
laws governing the motions of the planets. There were six known planets at that time
- and, according to the Copernican theory, their orbits were thought to lie on concentric
spherical shells about the sun. Kepler attempted to show that the radii of these shelis
were linked vp with the five regular solids of geometry. He proposed an ingenious idea
that the solar systern was designed something like a Chinese puzzle, At the center of the
systemn he placed the sun. Then, in succession, he arranged the six concentric spheres
hat can be inscribed and circumscribed around the five regular solids—the octahedron,
coszhedron, dodecahedron, tetrahedron, and cube, in respective order (from inside out).
The innermost sphere, inscribed in the regular octahedron, corresponded to Mercury’s
ath. The next sphere, which circumscribed the octahedron and inscribed the icosahedron,
orresponded to the orbit of Yenus. Earth’s orbit lay on the sphere around the icosahedron
nd inside the dodecahedren, and so on, the outermost sphere, containing Jupiter’s
rbit, being circumscribed around the cube. Although this theory seemed correct to
vithin five percent, astronomical observations at that time were accurate to apercentage error
uch smaller than this, and Kepler finally realized that he had to modlfy this theory.
fter much further study it oceurred to him that the observed data concerning the orbits
responded more to efljptical paths than the circular paths of the Copernican system.
fer several more years of unceasing effort, Kepler set forth three famous laws, empiri-
y discovered, which explained all the astronomical phenomena known at that time.
y may be stated as follows:

ler’s first law: Planets move in ellipses with the sun at one focus.

oler’s second law: The position vector from the sun to a planet sweeps out area at a
ant rate.

—
o
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Kepler’s third law: The square of the period of a planet is proportional to the cube of its .

nean distance from the sun.

Note: By the period of a planet is meant the time required to go once around the
elliptica! orbit. The mean distance from the sun is one half the length of the major axis
of the ellipse.

The formulation of these laws from a study of astronomical tables was a remarkabl
iwchievement. Nearly 50 vears later, Newton proved that all three of Kepler's laws are:
:onsequences of his own second law of motion and his celebrated universal law of gravi

tation. In this section we shall use vector methods to show how Kepler's laws may be-

deduced from Newton’s.
Orbit

Planet

Sun

FiGURE 14,13 The position vector from the sun to a pianet.

Assume we have a fixed sun of mass M and a moving planet of mass m atiractéd

the sun by a force F. (We neglect the influence of all other forces.) Newton's second law

of motion states that

(14.28) ' F=ma,

where a is the acceleration vector of the moving planet. Denote by » the position vector:
from the sun to the planet {as in Figure 14.19), let r = ll#ll, and let &, be a unit vector w1th:

the same direction as r, so that r = ru, . The universal law of gravitation states that

mM
F= -*G'"TTH,.,

where G is a constant. Combining this with (14.28), we obtain

. GM
{14.29) 4= — o s

which tells us that the acceleration is radial. In a moment we shall prove that the orbit_'.
lies in a plane. Once we know this, it follows at once from the results of Section 14.17 that

the position vector sweeps out area at a constant rate.

- Applications to planetary motion 547

To prove that the path lies in a plane we use the fact that » and a are parallel. If we
introduce the velocity vector v = dr/dr, we have

dy do d
rxa—rx“—-i-vxvmrx——kdt a(rxy),

Since r X & = O, this means that r X v is a constant vector, say r X v = ¢.

If e = O, the position vector r is parallel to » and the motion is along a straight line.
Since the path of a planet is not a straight line, we must have ¢ £ @. The refationr x v = ¢
shows that # - ¢ = 0, so the position vector lies in a plane perpendicular to e. Since the
acceleration is radial, » sweeps out area at a constant rate. This proves Kepler’s second
law.

Tt is easy to prove that this constant rate is exactly half the length of the vector ¢. In
fact, if we use polar coordinates and express the velocity in terms of u, and #, as in Equation

(14.25), we find that

dr ]
(14.30) c=r><v=(m,)><(dtu,+rj ug):rzg—fu,xug,

and hence el = {r2dbjdt]. By (14.27) this is equal to 2]4'(t)|, where 4’(¢) is the rate at

‘which the radius vector sweeps out area.

Kepler's second law is iilustrated in Figure 14.20. The two shaded regions, which are
swept out by the position vector in equal time intervals, have equal areas.
We shall prove next that the path is an ellipse. First of all, we form the cross product

2 X ¢, using {14.29) and (14.30), and we find that

dﬁ

G
a><c=(—~«+—-ur)x( s Xug)ﬂ——GMg u, X (u, Xu,,)-—GMde

dt

Since & = dv/ds and u, = da,[d0, the foregoing equation for @ X ¢ can also be written
-as follows:

d d
Et(v X €)= EE(GM”’) .

‘Integration gives us

vxXe=GMn, 4 b,

swhere b is another constant vector. We can rewrite this as follows:
(14.31) vXc=GMu,+ e,

“where GMe = A, We shall combine this with (14.30) to eliminate » and obtain an equation
Afor r. For this purpose we dot multiply both sides of (14.30) by ¢ and both sides of (14.31)
-by r. Equating the two expressions for the scalar triple product ¢ v X ¢, we are led to the
’_cquation

"(14.32) GMr(l 4 e cos ¢) == ¢2,

where ¢ = |lefl, ¢ = |||, and ¢ represents the angle between the constant vector e and the




548 Caleulus of vector-valued functions

radius vector r. (See Figure 14.21.) If we let 4 = ¢3/(GMe), Equation (14.32) becomes

ed

p=—-— or r=eéd—rcosg).
ecos ¢ + 1

(14.33)

By Theorem 13.18, this is the polar equation of a conic section with eccentricity e and a -
focus at the sun. Figure 14.21 shows the directrix drawn perpendicular to e at a distance -

d from the sun. The distance from the planet to the directrix is d — r cos ¢, and the ratio

|
]
Orbit Directrix l
|
i
|
i
r |
' |
1 : I
| I
: :
¢ ! g
~ M L]
rcos ¢ d—rcos¢ }
' i
I
d |
|

Ficure 14.21. The ratio #/(d — r cos ¢)

Fioure 14.20, Kepler’s second law, The ra
is the eccentricity ¢ = fefl.

two shaded regions, swept out in equal time
intervals, have equal areas.

rj(d — rcos ¢) is the eccentricity e. The conic is an ellipse if e <1, a parabola if e = 1
and a hyperbola if ¢ > 1. Since planets are known to move on closed paths, the orbi
under consideration must be an ellipse. This proves Kepler’s first law. .

Finally, we deduce Kepler's third law. Suppose the ellipse has major axis o_f lcr_igth 2a
and minor axis of length 2b. Then the area of the ellipse is wab. Let T be t}le time it take
for the planet to go once around the ellipse. Since the position vector sweeps out arca a
the rate ¢, we have ycT = wab, or T = 2rabfc. We wish to prove that T% 15 proportions
to &

From Section 13.22 we have #% = ¢*(1 — ¢€%), ed = a(l - €%, so

¢ = GMed = GMa(l — &%),
and hence we have

T — 47%0%h* — 47t 1 — &%) — 4-_11'2 &
T GMa(l — ¢ GM

Since 7% is a constant times %, this proves Kepler’s third law,
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14.21 Miscellaneous review exercises

I. Let r denote the vector from the origin to an arbitrary point on the parabola 32 = x, let «
be the angle that r makes with the tangent line, ¢ < « < =, and let 9 be the angle that r makes
with the positive x-axis, 0 < 6 < =. Express « in terms of 6.

2. Show that the vector T = yi + 2¢f is tangent to the parabola y® = 4cx at the point {x, ),

and that the vector N = 2¢i — yj is perpendicular to T.

[Hint: Write a vector equation for the parabola, using y as a parameter.}

3. Prove that an equation of the line of slope m that is tangent to the parabola 3* = 4ex can

be written in the form y = mox + ¢/m. What are the coordinates of the point of contact?

4. (a} Solve Exercise 3 for the parabola (y — y)% = 4el(x — x,).

(b) Solve Exercise 3 for the parabola x® = 4cy and, more generally, for the parabola
(x — xp) = de(y — po. .

- Prove that an equation of the line that is tangent o the parabola y* = 4ex at the point
(x5 ; yy) can be written in the form yy = 2e(x + x3).

. Salve Exercise 5 for each of the parabolas described in Exercise 4.

. (@) Let P be a point on the parabola y = x% Let Q be the point of intersection of the normal
line at P with the y-axis. What is the limiting position of Q as P tends to the y-axis?

(b} Solve the same problem for the curve y = f{x), where f*(0) = 0.

. Given that the line y = ¢ intersects the parabola y = x* at two points. Find the radius of
the circle passing through these two points and through the vertex of the parabola. The radius
you determine depends on ¢. What happens to this radius as ¢ —0?

- Prove that a point (xo , yo) is inside, on, or ourside the ellipse x*/a® + y*/b* = I according as
xifa® + yEb? is less than, equal to, or greater than 1.

10. Given an ellipse x¥a® + y*/b* = |. Show that the vectors T and N given by

KoL X, X, 2.
T=rpital, N=gitpi
are, respectively, fangent and mormal to the ellipse when placed at the point (x, ), If the
eccentric angle of (X, yo) is 6, show that the tangent line at (x, , p) has the Cartesian equation

x ¥y,
Ecosﬂu—i-gsmﬂu=

. Show that the tangent line to the ellipse x¥a® + y2/b* = 1 at the peoint (xg , yp) has the
equation xgx/a® + yoy/b? = 1.

- Prove that the product of the perpendicular distances from the foci of an ellipse to any tangent
line is constant, this constant being the square of the length of half the minor axis.

- Twa tangent lines are drawn to the ellipse x? 5 4)® = 8, each parallel to the line x 4 2y = 7,
Find the points of tangency.

- A circle passes through both foci of an ellipse and is tangent to the ellipse at two points,
Find the eccentricity of the ellipse.

+ ket ¥be one of the two vertices of a hyperbola whose transverse axis has length 2¢ and whose
ecceniriciiy is 2. Let P be a point on the same branch as V. Denote by A the area of the
region bounded by the hyperbola and the line segment ¥7, and let » be the length of VP
(a) Place the coordinate axes in'a convenient position and write an equation for the hiyperbola.
(b) Express the area A as an integral and, without attempting to evaluate this integral, show
that 4r~? tends to a limit as the point P tends to V. Find this limit.
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17.

18.

19.

20.

21

22.

. Show that the vectors T = (y/b™i + (xja%)j and N = (x/abi — (y[b®)f ate, respectively, tan-

gent and normal to the hyperbola x*a® — 210* = 1if placed at the point (_x, ¥ on thfe curve.
Show that the tangent line to the hyperbota x/a® — y*6% = 1 at the point(xy, yo) is given
by the equation xex/a® — yoy/d* = 1. . N

The normal line at each point of a curve and the line from that point to the origin form an
isosceles triangle whose base is on the x-axis. Show that the curve is a hyperbgla. .
The normal line at a point P of a curve intersects the x-axis at X and the y-axis at ¥. Flpd
the curve if each P is the mid-point of the corresponding line segment XY and if the point
{4, 5) is on the curve. .

Prove that the product of the perpendicular distances from an arbitrary point on a hyperbala
to its asymptotes is constant. ‘ o o

A curve [s given by a polar equation r = f(8). Find fif an arbitrary arc joining two $hstmct
points of the curve has arc length proportional to (a) the angle subtended at the origin; (b)
the difference of the radial distances from the origin to its endpeints; ,(_c) the area of the sector
formed by the arc and the radii to its endpoints. . o
If a curve in 3-space is described by a vector-valued function » d.eﬁned on a parametric ull-
terval [a, b], prove that the scalar triple product #'{#) - r{a) % r(b) is zero for at least one 7 in
(a, b). Interpret this result geometrically.

15

LINEAR SPACES

153 Introduction

Throughout this book we have encountered many examples of mathematical objects
that can be added to each other and multiplied by real numbers, First of all, the real
numbers themselves are such objects. Other examples are real-valued functions, the complex
numbers, infinite series, vectors in n-space, and vector-valued functions. In this chapter we
discuss a general mathematical concept, cailed a linear space, which includes all these
examples and many others as special cases.

Briefly, a linear space is a set of elements of any kind on which certain operations (called
addition and mudtiplication by numbers) can be performed.. In defining a linear space, we
do nat specify the nature of the elements nor do we tell how the operations are tc be per-
formed on them. Instead, we require that the operations have certain properties which
we take as axioms for a linear space. We turn now to a detailed description of these axioms.

152 The definition of a linear space

Let ¥ denote a nonempty set of objects, called elements. The set ¥ is called a linear
space if it satisfies the following ten axioms which we list in three groups.

Closure axioms

AX{OM 1. CLOSURE UNDER ADDITION. For every pair of elements x and y in V there
corresponds a unique element in V' called the sum of x and y, denoted by x + y.

AXIOM 2. CLOSURE UNDER MULTIPLICATION BY REAL NUMBERS. For every x in ¥ and
every real number a there corresponds an element in V called the product of a and x, denoted
by ax.

Axioms for addition

AXIOM 3. COMMUTATIVE LAW. For all x and y in V, we have x + y =y + x.

AXIOM 4.  ASSOCIATIVE LAW. Forallx,y,andzinV, we have (x + y) + z = x 4+ (y + 2).
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