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29. It g() = ¥ and let f(x) = 5 g0 4 10 dt. Compute the limit of f“(x)/g"(x) as
& -,
30. Tet g(x) = x%* and let f(x) = % (32 + 1)¥2 dr. For a certain value of ¢, the limit of
F4x)]g'(x) as x — + oo is finite and nonzero. Determine ¢ and compute the value of the limit.
31 LR f(x) = e V¥ if x 520, and let £(0) = 0.
(@) Prove that for every m > 0, f(x)/x™ — Oas x — 0.
() Prove that for x # 0 the nth derivative of f has the form f™(x) = f(x)P(1/x), where P(r)
is & polynomial in ¢,
(¢) Prove that f®0) =0 for all # > 1, This shows that every Taylor polynomial generated
“by fat 0 is the zero polynomial. _
32. An amount of P dollars is deposited in a bank whith pays interest at a rate r per year, com-
pounded m times a year. (For example, r = 0.06 when the annual rate is 677.) (a) Prove that
the total amount of principal plus interest at the end of r years s P(1 4 rfm)™™. I r and n
are kept fixed, this amount approaches the limit Pe™ as m — + w. This motivates the follow-
ing definition: We say thaf money grows at an annual rate r when compounded contiauously
if the amount f(¢) after ¢ years is f(0)e™?, where ¢ is any nonnegative real number. Approxi-
mately how long does it take for a bank account to double in valug if it receives interest at an
annual rate of 6% compounded (b} continuously ? (c) four times a year?
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INTRODUCTION TO DIFFERENTIAL EQUATIONS

8.1 Introduction

A large variety of scientific problemns arise in which one tries to determine something
from its rate of change. For example, we could try to compute the position of a moving
particle from a knowledge of its velocity or acceleration. Or a radioactive substance may
be disintegrating at a known rate and we may be required to determine the amount of
material present after a given time. In examples like these, we are trying to determine an
unknown function from prescribed information expressed in the form of an equation
invelving at least one of the derivatives of the unknown function. These equations are
calied differential equations, and their study forms one of the most challenging branches
of mathematics.

Differential equations are classified under two main headings: ordinary and partial,
depending on whether the unknown is a function of just one variable or of two or more
variables. A simple example of an ordinary differential equation is the relation

(8.1) ') =f(x)

which is satisfied, in particular, by the exponential function, f{x) = e*. We shall see
presently that every solution of (8.1) must be of the form f(x) = Ce”, where C may be any
constant. -

On the other hand, an equation like

7 (x, ¥ 4 Ffx 0 _ g
ox* ay*

is an example of a partial differential equation. This particular one, called Laplace’s
equation, appears in the theory of electricity and magnetism, fluid mechanics, and else-
where. It has many different kinds of solutions, among which are f(x, y) = x + 2,
f(x, 1) = e cos y, and f(x, ) = log (x* + ). ’

The study of differential equations is one part of mathematics that, perhaps more than
any other, has been directly inspired by mechanics, astronomy, and mathematical physics.
Its history began in the 17th century when Newton, Leibniz, and the Bernoullis solved
some simple differential equations arising from problems in geometry and mechanics.
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These early discoveries, beginning about 1690, gradually Ied to the development of a now-
classic “*bag of tricks™ for solving certain special kinds of differential equations. Although
these special tricks are applicable in relatively few cases, they do enable us to solve many
differential equations that arise in mechanics and geometry, so their study is of practical
importance. Some of these special methods and some of the problems which they help us
solve are discussed near the end of this chapter.

Experience has shown that it is difficult to obtain mathematical theories of much
generality about solutions of differential equations, except for a fegw types. Among these
are the so-called /inear differential equations which occur in a great variety of scientific
problems. The simplest types of linear differential equations and seme of their applications
are also discussed in this introductory chapter. A more thorough study of linear equations

is carried out in Volume I,
7

8.2 Terminology and notation

When we work with a differential equation such as (8.1), it is gustomary to write y in
place of f(x) and y" in place of f(x), the higher derivatives being denoted by ", ¥”, etc.
Of course, other letters such as u, v, z, etc. are also used instead of ¥. By the order of an
equation is meant the order of the highest derivative which appears: For example, (8.1)
is a first-order equation which may be written as ¥’ == y. The differential equation
¥ = x% 4 sin (xp"} is one of second order,

In this chapter we shall begin our study with first-order equations which can be solved
for ¥ and written as follows:

(8.2) ¥ =10,

where the expression f(x, ») on the right has various special forms. A differentiable function
y = Y(x) will be called a solution of (8.2) on an interval I if the function ¥ and its derivative
Y satisfy the relation

Y'(x) = flx, ¥(x))

for every x in 1. The simplest case occurs when f(x, p) is independent of 3. In this case,
(8.2) becomes

(8.3 ¥ =00,

say, where Q is assumed to be a given function defined on some interval 7. To solve the
differential equation (8.3) means to find a primitive of @. The second fundamental theorem
af caleulus tells us how to do it when @ is continuous on an open interval f. We simply
integrate @ and add any constant. Thus, every solution of (8.3) is included in the formula

(34) y=fomax +c,

where Cis any constant (usually called an arbitrary constant of integration), The differential
equation (8.3} has infinitely many solutions, one for each value of C.
If it is not possible to evaluate the integral in (8.4) in terms of familiar functions, such
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as polyrnomials, rational functions, trigonometric and inverse trigonometric functions,
logarithms, and exponentials, still we consider the differential equation as having been
solved if the solution can be expressed in terms of integrals of known functions. In zctual
practice, there are various methods for obtaining approximate evaluations of intcgrals
which lead to useful information about the solution. Automatic high-speed computing
machines are often designed with. this kind of problem in mind.

EXAMPLE. Linear motion determined from the velocity. Suppose a particle moves along a
straight line in such a way that its velocity at time ¢ is 2 sin 7. Determine its position at
time 1. :

Solution. If ¥(¢) denotes the position at time ¢ measured from some starting point, then
the derivative ¥'(¢) represents the velocity at time . 'We are given that

Y(t)=2sint.
Integrating, we find that

Y(r)zzfsinrdtﬂ—C: —2cost+ C.

This is all we can deduce about ¥{¢) from a knowledge of the velocity alone; some other
piece of information js needed to fix the position function. We can determine C if we know
the value of ¥ at some particular instant. For example, ift ¥{0} = 0, then C'= 2 and the
position function is ¥{¢) =2 — 2cos . But if ¥{0) =2, then C =4 and the position
function 1s ¥{f) =4 — 2cos &.

In some respects the example just solved is typical of what happens in general. Some-
where in the process of solving a first-order differential equation, an integration is required
to remove the derivative 3' and in this step an arbitrary constant C appears. The way in
which the arbitrary constant C enters into the solution will depend on the nature of the
given differential equation. It may appear as an additive constant, as in Equation (8.4),
but-it is more likely to appear in some other way. For example, when we solve the equation
3’ = y in Secticn 8.3, we shall find that every solution has the form p = Ce®

In many problems it is necessary to select from the collection of all solutions one having
a prescribed value at some point. The prescribed value is called an initial condition, and
the problem of determining such a solution is called an initial-value problem. This
terminology originated in mechanics where, as in the above example, the prescribed value
represents the displacement at some initial fime,

We shall begin our study of differential equations with an important special case.

8.3 A first-order differenfial equation for the exponential function

The exponential function is equal to its own derivative, and the same is true of any
constant multiple of the exponential. It is easy to show that these are the only functions
that satisfy this preperty on the whole real axis.

THEOREM. 8.1. If C is a given real mumber, there is one and only one function f which
satisfies the differential equation :
Fx) = f(x)
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Jor all real x and which also satisfies the initial condition f(0) = C. This function is given
by the formula
Slx) = Ce®.

Proof. Itiseasy to verify that the function f(x) == Ce® satisfies both the given differential
equation and the given initial condition. Now we must show that this is the only solution.
Let y = g(x) be any solution of this initial-value problem:

g'(x) = g(x) for all x, g0y = C. 4

We wish to show that g(x) = Ce® or that g(x)e~® = C. We consider the function A(x) =
glx}e™ and show that its derivative is always zero. The derivative of 4 is given by

h(x) = g'{x)e™ — g(x)e™ = e"[g'(x) — g{x)] = 0,

Heace, by the zero-derivative theorem, % is constant. But g(0) = € so k(0) = g(0)e* = C. .

Hence, we have 4(x) = C for all x which means that g(x) = Ce®, as required,

- Theorem 8.1 is an example of an existence-uniqueness theorem. 1t tells us that the given
initial-value problem Aas a solution {existence) and that it has only one solution (uniqueness),
The object of much of the research in the theory of differential equations is to discover
existence and uniqueness theorems for wide classes of equations.

We discuss next an important type which includes both the differential equation y’ = Q(x)
and the equation y* = y as special cases.

8.4 Tirst-order linear differential equations

A differentjal equation of the form

(8.5) Y+ PRy = Q(x),

where P and @ are given functions, is called a first-order linear differential equation. The
tertns involving the unknown function y and its derivative y” appear as a linear combination
of y and »'. The functions P and ¢ are assumed to be continuous on some open interval J.
We scek all solutions y defined on 1.

First we consider the special case in which the right member, Q(x), is identically zero,
The equation

(8.6) ¥+ PG)y =0

is called the homogeneous or reduced equation corresponding to (8.5). We will show how
to solve the homogeneous equation and then use the result to help us solve the non-
homogeneous equation (8.5).

If y is nonzero on J, Equation (8.6) is equivalent to the equation

(8.7) y;= ~P(x) .
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That is, every nonzero y which satisfies (8.6) also satisfies (8.7 and vice versa. Now suppase
y is a positive function satisfying (8.7). Since the quotient ¥'{y is the derivative of log p,
Equation (8.7) becomes D logy = —P(x), from which we find logy = —[P(x) dx + (,
so we have :

(8.8) y =4 where A(x)= fP(x) dx — C.

In other words, if there is a positive solution of (8.6), it must necessarily have the form
(8.8) for some C. But now it is easy to verify that every function in (8.8) is a solution of
the homogeneous equation (8.6). In fact, we have ‘

yr — _e—A(w)Ar(x) - __P(x)e-vi(ac) = -—-P(x)y R

Thus, we have found all positive'solutions of (8.6). But now it is easy to describe all
solutions. We state the result as an existence-uniqueness theorem.

THEOREM 8.2. Assume P is continuous on an open interval 1. Choose any point a in [
and let b be any real number. Then there is one and only one function y = f(x) which satisfies
the initial-value problem

(8.9 ¥+ Plx)y = 0, with  flay=28,

on the interval I. This function is given by the formula
(3.10) SO = b4, where A(9) = [ P()dt.

Proof. Let f be defined by (8.10). Then A(@ = 0 s0 f(a) = be = h. Differentiation
shows that f satisfies the differential equation in (8.9), so fis a solution of the initial-value
problem. Now we must show that it is the only soluticn.

Let g be an arbitrary solution. We wish to show that g(x) = be—% or that g{x)e? ") = b,
Therefore it is natural to introduce i(x) = g(x)ed™, The derivative of 4 is given by

(8.11) H(x) = g()et™ + g(x)et™A'(x) = e*g'(x) + P(x)g(x)} .

Now since g satisfies the differential equation in (8.9), we have g'(x) + P(x)g(x) =0
everywhere on J, se /'(x) = 0 for all x in [. This means that /t is constant o /. Hence,
we have A(x) = h{a) = gla)e™ = g(a) = b. In other wards, g{x)e™ = b, so g(x) =
be=4¥), which shows that g = #. This completes the proof.

The last part of the foregoing proof suggests a method for solving the nonhomogeneous
differential equation in (8.5). "Suppose that g is any function satisfying (8.5), and let
h{x) = g(x)ed® where, as above, A(x) = [% P(t) df. Then Equation (8.11} is again valid,
but since g satisfies (8.5), the formula for 4'(x) gives us

R(x) = e4P0(x) .
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Now we may invoke the second fundamental theorem to write

B = ha) + |, e dr.

Hence, since h{a) = gi{a), every solution g of (8.5) has the form

(8.12) g(x) — ef.a(m)h(x) — g(a)e—A(m) + eAA(:c) }:5 Q(t)eam dt.

Conversely, by disect differentiation of (8.12), it is easy to verify that each such g is a
solution of (8.5), so we have found ai/ solutions. We state the result as follows.

THEOREM 8.3. Assume P and ( are continucus on an open interval I, Choose any point
a in I and let b be any real mumber. Then there s one and only one function y = f(x) which
satisfles the initial-value problem

V4 Py = Q) with fla)=b,

on the interval 1. This function is given by the formula

&
f(x) — be-.A(m] + e—A(m)L Q(I)eA(”dt ,

sufiere A(x} == |2 P(1) dt.

Up to now the word “interval” has meant & bounded interval of the form (g, b), [a, ], l

[a, b), or (a, b], with a < b. Tt is convenient to consider also unbounded intervals. They
are denoted by the symbeols (g, + o), (—oo,q), [a, +00) and {~, a], and they are
defined as follows: )

(a,+oo):{x|x>a}, (—OG,LI)--_«{X{X<(I},

[a, +o0)={x|xza}, (—wal={&]xZa}.
In addition, it is convenient to refer to the collection of alf real:numbers as the interval
(— a0, 4 co). Thus, when we discuss a differential equation or its solution over an interval

7, it will be understood that / is one of the nine types just described.

ExameLE. Find all solutions of the first-order differential equation xy” + (1 — x)y =
on the interval (0, + o0).

Selution. First we transform the equation to the form p’ + P(x)y = Q(x) by dividing
through by x. This gives us

, 1 &
Y +(;m1)y_ x

Exerciseg

s0 P(x) = ljx — 1 and Q(x) = e®/x. Since £ and ¢ are continuous on the in

{0, + o0), there is a unique solution y = f{x) satisfying any given initial condition

form f(a) = b. We shall express all solutions in terms of the initial value at the point ¢

In other words, given any real number b, we will determine all solutions for which f{f,
First we compute ’

Alx) =J::P(t) di ﬁj‘:’(i— — 1) dt=logx —(x~1).

Hence we have ¢ 4% = g83-308% oo ge-lfyx and 4 = ret~* go Theorem 8.3 tc
that the solution is given by the formula

a—1 B N i g : z—1 & [*z
fxy=b5- 4 £ f—“irel-fd:=be +—e—fe*cn
X 1 f x )i

x x
emfl ew 0 e:z-wl eE:L- em+1
=& e —Ad=bt T
We can also write this in the form
e’ 4 Ce”
o) =155,

where C = be™! — e. This gives all solutions on the interval (0, + 20).

1t may be of interest to study the behavior of the solutions as x — 0. If we appro
the exponential by its linear Taylor polynomial, we find that e =1 + 2x + ol
e® =1 + x + o(x) as x 0, so we have

1+O0O)4+Q2+Cx+ o 14 C
f(x)ﬁ( + )+ ( ) (X)=F L2+ O+ o).
: x x
Therefore, only the solution with C = —1 tends to a finite limit as x — 0, this limit b

8.5 Exercises

In each of Exercises 1 through 5, solve the initial-value problem on the specified interval.

1.y = 3y = ¢® on (—ow, +w), with y =0 whenx =0,

2. xy" =2y = x5 on (0, 4 0), with y = 1 when x = [,

3.y ytanx =sin 2x on (—§=, §=), with y = 2 when x = 0.

4. ¥y + xy = x* on (— @, +c0), with y = 0 when x = 0.

3. o + x = ¥ on {— 0, + ), with x = 1 when ¢t =0,

6. Find all solutions of y'sin x 4 y cos x = 1 on the interval (0, =). Prove that exactly
these solutions has a finite iimit as x — 0, and another has a finite limit as x — =.

7. Find all solutions of x(x + 1)y" + y = x(x + 12" on the interval (—1, 0). Prove t
solutions approach ¢ as x — —1, but that only one of them has a finite limit as x — 0

8. Find all solutions of y* 4+ ycot x = 3 cos x on the interval (0, #). Prove that exactly
these is also a solution on (— e, + ),
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9. Find all solutions of (x — 2)(x — 3y + 2y =(x — 1)(x —2) on each of the following
intervals: (a) (— oo, 2); (b) (2, 3); {¢) (3. + ). Prove that all solutions tend to a finite limit
as x — 2, but that none has a finite limit as x — 3. :

10. Let s(x) = (sin x)/x if x 0, and let s(0) = 1. Define T(x} = [§s(r) dr. Prove that the
function f(x) = xT(x) satisfies the differential equation xy" —y = xsinx on the interval
(—w, + ) and find all solutions on this interval. Prove that the differential equation has
no solution satisfying the initial condition f(0) = I, and explain why this does not contradict
Theorem 8.3. . )

11. Prove that there is exactly one function f] continuous on the positive real axis, such that

Fo) =14+ fmf(t) dt
. - x i

for all x > 0 and fird this function.
12, The function f defined by the equation

S = xeledi2 — g J‘f 1% dt

for x > 0 has the properties that (i) it is continuous on the positive real axis, and {ii} it satisfies
the equation '

fo =1-x["foa

for all x > 0. Find all functions with these two properties.

The Bernoulli equation, A differential equation of the form y* + Pix)y = Q(x)y", where n is
ot 0 or 1, is called a Bernoulli equation. This equation is nonlinear because of the presence of y».
The next exercise shows that it can always be transformed info a linear first-order equation for a
new unknown function v, where v = J*, k =1 — a.

13. Let & be a nonzero constant. Assume P and Q are continuous on an interval I. If e € and
if b is any real number, let » = g(x) be the unique solution of the initital-value problem
v 4 kP(x)o = kQ(x) on I, with gl@) =b. If n 1 and k=1 —n, prove that a function
y = f{x), which is never zero on I, is a solution of the initial-value problem

Y +PEy = QG on I with f@F =5

if and only if the kth power of fis equal to g on L

In each of Exercises 14 through 17, solve the initial-vatue problem on the specified interval.

14, y ~ dy = 2"y on (— o0, o0}, with y = 2 when x = 0.

15y —y = —y%x* + x + 1) on (~w, +o0), withy =1 whenx = 0.

15, xp’ = 2y = 4x*% on (-0, + ), with y = O when x = 1.

17. 2y’ +y = pixtlog x on (0, + ), withy =} whenx =1, .

18, Zxpy + (1 + xp? = €2 on (0, + =), with (ay = Vewhenx =1; (b} y = —A/e whenx = i;
(c) a finite limit as x - 0,

19. An equation of the form ¥ + P(x)y + Q(x)y* = R(x) is called a Riceati equation. (There
i3 no known method for solving the general Riccali equation.) Prove that if x is a known
solution of this equation, then there are further solutions of the form y = u + 1fv, where v
satisfies a first-order linear equation.

Some physical problems leading to first-order linear differential equations 313

20. The Riccati equation " + y + »* = 2 has two constant solutions. Start with each of these
and use Exercise 19 to find further solutions as foliows:; (@) If —2 < & < 1, find a solution on
(— o, + ) for which y = bwhenx = 0. (b) If & 2 1 or & < —2, find a solution on the interyal
{— oo, + ) for which y = b when x = 0.

8.6 Some physical problems leading to first-order linear differential equations

In this section we will discuss various physical problems that can be formulated mathe-
matically as differential equations. In each case, the differential equation represents an
idealized simplification of the physical problem and is calied a mathematical model of
the problem. The differential equation occurs as a translation of some physical law, such
as Newton's second law of motion, a “conservation’ law, etc. Our purpose here is not to
justify the choice of the mathematical model but rather to deduce logical consequences
from it. Each model is only an approximation te reality, and its justification property
belongs to the science from which the problem emanates. If intuition or experimental
evidence agrees with the results deduced mathematically, then we feel that the model is a
useful one. If not, we try to find a more suitable model.

EXAMPLE |, Radioactive decay. Although various radioactive elements show marked
differences in their rates of decay, they all seem to share a common property—the rate at
which a given substance decomposes at any instant is proportional to the amount present
at that instant. If we denote by y = f(#) the amount present at time ¢, the derivative y’ =
f(#) represents the rate of change of y at time ¢, and the “law of decay” states that

Y= —ky,

where k is a positive constant {(called the decay constant) whose actual value depends on
the particular element that is decomposing. The minus sign comes in because y decreases
as ¢t increases, and hence y’ is always negative. The differential equation " = —/ky is the
mathematical model used for problems concerning radioactive decay. Every solution
y = f(t) of this differential equation has the form

(8.13) L) =)

Therefore, to determine the amount present at time 7, we need to know the initial amount
f(0) and the value of the decay constant k,

Tt is interesting to see what information can be deduced from (8.13), without knowing the
exact vaiue of f(0) or of k. First we observe that there is no finite time ¢ at which f(r) will
be zero because the exponentjal e~ never vanishes. Therefore, it is not useful to study
the ‘“total lifetime” of a radicactive substance. However, it is possible to determine the
time required for any particular fraction of a sample to decay. The fraction § is usually
chosen for convenience and the time T at which f(T){f(0) = } is called the half-life of the
substance. This can be determined by solving the equation e™*T =} for T. Taking
logarithms, we get —kT = —log 2 or T = (log 2)/k. This equation relates the half-iife
to the decay constant. Since we have

fG+T)  fOeHHT
f©  f@e

3
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TFigure 8.1 Radioactive decay with half-life T,

re see that the half-life is the same for every sample of a given material. Figure 8.1 illustrates
he general shape of a radioactive decay curve.

EXAMPLE 2. Falling bady in a resisting medium. A body of mass m is dropped from
est from a great height in the earth’s atmosphere. Assume that it falls in a straight line
nd that the only forces acting on it are the earth’s gravitational attraction (mg, where g is
he acceleration due to gravity, assumed to be constant) and a resisting force (due to air
=sistance) which is proportional to its velocity. It is required to discuss the resulting
10tion.

Let s = f{(¢} denote the distance the body has fallen at time fand let v = 5" = f'(7} denote
s velocity. The assumption that it falls from rest means that f'(0) = 0.

There are two forces acting on the body, a downward force mg (due to its weight) and
n upward force ~kv (due to air resistance), where k is some positive constant. Newton’s
scond law states that the net sum of the forces acting on the body af any instant is equal
y the product of its mass m and its acceleration. If we dencte the acceleration at time ¢
y a, then a = ¢’ = 5" and Newton’s law gives us the equation '

ma=rmg — kv.

his can be considered as a second-order differential equation for the displacement s or
s a first-order equation for the velocity v. As a first-order equation for v, it is linear and
an be written in the form :

v’+n—qv=g.

his equation is the mathematical model of the problem. Since » = 0 when ¢ = 0, the
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unique solution of the differential equation is given by the formula
t -

814 o = oo i = M8 1 — k),
o

Note that v — mgfk as t— 4. 1f we differentiate Equation (8.14), we find that the
acceleration at every instant is @ = ge~*/™, Note that a—0 as f— +co. Interpreted
physically, this means that the air resistance tends to balance out the force of gravity.

Since v = s, Equation (8.14) is itself a differential equation for the displacement s, and
it may be integrated directly to give

_mg B
8= t+ = e + C.
Since 5 = 0 when ¢ = 0, we find that C = —gm?{k? and the equation of motion becomes

if the initial velocity is v, when f = 0, formula (8.14) for the velocity at time ¢ must be
replaced by

v == %g* (1— e—k"'"‘) + er?kt"m.

It is interesting to note that for every initial velocity (positive, negative, or zero), the limiting
velocity, as ¢ increases without bound, is mg/fk, a number independent of ,. The reader
should convince himself, on physical grounds, that this seems reasonable.

EXAMPLE 3. A cooling problem. The rate at which a body changes temperature is pro-
portiopal to the difference between its temperature and that of the surrounding medium.
(This is called Newton’s law of cooling.) If p = f(t) is the (unknown) temperature of the
body at time ¢ and if M(t) denotes the (known) temperature of the surrounding medium,
Newton’s law leads to the differential equation

(8.15) Vo= —k[y— M) oty +ky=kM({),
where k is a positive constant. This first-order linear equation is the mathematical model

we use for cooling problems. The unique solution of the equation satisfying the initial
condition f{a) = b is given by the formula

(8.16) £ = be 4 e [ k(e du .

Consider now a specific problem in which a body cools from 200° to 100° in 40 minutes
while immersed in a medium whose temperature is kept constant, say M(¢) == 10°. 1f we
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measuze £ in minutes and f{¢) in degrees, we have f(0) = 200 and Equation (8.16) gives us

14
(8.17) J{t) = 2007 4 IOke"“fo " dy
= 200e™™ + 10(1 — &™) = 10 4 1907,

We can compute k from the information that f{40) = 100. Putting 7 = 40 in (8.17), we
find 90 = 190e™4% g0 —40k = log (90/190), k = F(log 19 — log 9).

Next, let us compute the time required for this same material to cool from 2007 to
100° if the temperature of the medium is kept at 5°. Then Equation (8.16} is valid with the
same constant k but with M) = 5. Instead of (8,17), we get the formula

() =5 + 1956,

To find the time ¢ for which f(r) = 100, we get 95 = 195¢"% , so —kt = log (95/195) =
log {19/39), and hence

log 39 — log 19

t =—(log 3% — log 19) = 40 .
(log g19) log 19 — log 9

&=

From a four-place table of natural logarithms, we find log 39 = 3.6636, log 19 == 2.9444, 7

and log 9 = 2,1972 so, with slide-rule accuracy, we get £ = 40(0.719)/(0.747} = 38.5
minutes. .

The differential equation in (8.15) tells us that the rate of cooling decreases considerably
as the temperature of the body begins to appreach the temperature of the medium. To
illustrate, let us find the time required to cool the same substance from 100° to 10° with
the medium kept at 5°. The calculation leads to log (5/95) = —k¢, or

log 19 _ 402944) _
log 19 — log 9 0.747

[ = %log 19 = 40 158 minutes .
C .

Note that the temperature drop from 100° to 10° takes more than four fimes as long as the
change from 200° to 100°,

EXAMPLE 4. A dilurion problem. A tank contains 100 gallons of brine whose concentration
is 2.5 peunds of salt per gallon. Brine containing 2 pounds of salt per gallon runs into the
tank at a rate of 5 gallons per minute and the mixture (kept uniform by stirring) runs out
at the same rate. Find the amount of salt in the tank at every instant.

Let y = f(#) denote the number of pounds of salt in the tank at time ¢ minutes after
mixing begins. There are two factors which cause y to change, the incoming brine which
brings salt in at a rate of 10 pounds per minute and the outgoing mixture which removes salt
at a rate of 5(y/100) pounds per minute. (The fraction y/100 represents the concentration
at time ¢.) Hence the differential equation is

¥ =10 — 5y or Y+ sy =10,

This linear equation is the mathematical model for our problem. Since y = 250 when
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¢ = 0, the unique solution is given by the formula

(8.18) y = 250e7H% - ¢4 f: 10"/ dy = 200 + 50¢"*°.

This equation shows that y > 200 for all 7 and that y — 200 as z increases without bound.
Hence, the minimum sait content is 200 pounds. (This could also have been guessed from
the statement of the problem.) Equation (8.18) can be sotved for £ in terms of y to yield

t = 20 log (MSO ) .
y — 200

T'his enables us to find the time at which the salt content will be a given amount y, provided
that 200 <y < 250,

EXAMPLE 5. Electric circuits. Figure 8.2(a), page 318, shows an electric circuit which
has an electromotive force, a resistor, and an inductor connected in series. The electro-
motive force produces a voliage which causes an electric current to flow in the circuit.
If the reader is not familiar with electric circuits, he should not be concerned. For our
purposes, all we need to know about the circuit is that the voliage, denoted by V(#),
and the current, denoted by I(t), are functions of time ¢ related by a differential equation
of the form

(8.19) LI + RKE) = V(1) .

Here L and R are assumed to be positive constants. They are called, respectively, the
inductance and resistance of the circuit. The differential equation is a mathematical form-
ulation of a conservation law known as Kirehhoff °s voltage law, and it serves as a mathe-
matical model for the circuit.

Those readers unfamiliar with circuits may find it helpful to think of the current as being
analogous to water flowing in a pipe. The electromotive force (usually a battery or &
generator) is analogous to a pump which causes the water to flow; the resistor is analogous
to friction in the pipe, which tends to oppose the flow; and the inductance is a stabilizing
influence which tends to oppose sudden changes in the current due to sudden changes in
the voltage.

The usual type of question concerning such circuits is this: If a given voltage F{(f) is
impressed on the circuit, what is the resulting current [{¢)? Since we are dealing with a
first-order linear differential equation, the solution is a routine matter. If I(0) denotes the
initial current at time ¢ = 0, the equation has the solution :

i
1(5) = I(0)g ™% + e~ RIE f Vm%‘) eB/L gix.
a

An important special case occurs when the impressed voltage is constant, say V(1) = E
for all «. In this case, the integration is easy to perform and we are led to the formula

=5+ (1{0) - %) RIL
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FiGURE 8.2 (a) Diagram for a simple series circuit. {b) The current resulting from
a constant impressed voltage E.

This shows that the nature of the soluticn depends on the relatidn between the initial
current /{0) and the quotient E/R. If I(0) = E/R, the exponential term is not present and
the current is constant, /(t) = E/R. If K{0) > E/R, the coefficient of the exponential term
is positive and the current decreases to the limiting value E/R as t — +oo. If {0) < E/R,
the current increases to the limiting value E/R. The constant E/R is called the steady-state
current, and the exponential term [I{0) — E/R]e~®/% is called the transient current, Exam-
ples are illustrated in Figure 8.2(b).

The foregoing examples illustrate the unifying power and practical utility of differential
equations. ‘They show how several different types of physical problems may lead to
exactly the same type of differential equation.

The diflerential equation in (8.19) is of special interest because jt suggests the possibility
of attacking a wide variety of physical problems by electrical means. For example, suppose
a physical problem leads to a differential equation of the form

F+a=0,

where a is a positive constant and @ is a known function. We can try to construct an
electric circuit with inductance L and resistance R in the ratio RfL = a and then try to
impress a voltage LQ on the circuit. We would then have an electric circuit with exactly the
same mathematical model as the physical problem. Thus, we can hope to get numerical
data about the sclution of the physical problem by making measurements of current in
the electric circuit. This idea has been used in practice and has led to the development of
the analog computer.
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8.7 Exercises

In the following exercises, use an appropriate first-order differential equation as a mathematical
madel of the problem.

1, The half-life for radium is approximately 1600 years. Find what percentage of a given quantity
of radium disintegrates in 100 years.

2. If a strain of bacteria grows at a rate proportional to the amount present and if the population
doubles in ene hour, by how much will it increase at the end of two hours?

3. Denote by y = f{1) the amount of a substance present at time ¢. Assume it disintegrates at a
rate proportional to the amount present. If » is a positive integer, the number T for which
J(T) = f(0)/n is called the 1/ath life of the substance,

(a) Prove that the 1/ath life is the same for every sample of a given material, and compute T
in terms of # and the decay constant k.
(b) If @ and b are given, prove that fcan be expressed in the form

f(f) __.f(a)w{t.:lf(b)l—w(t)

and determine w(#). This shows that the amount present at time ¢ is a weighted geometric
mean of the amounts present at two instants f =g and ¢ = b.

4, A man wearing a parachute jumps from a great height. The combined weight of man and para-
chute is 192 pounds. Let »(¥) denote his speed (in feet per second) at time 7 seconds after
falling. During the first 10 seconds, before the parachute opens, assume the air resistance is
#p(r) pounds. Thereafter, while the parachute is open, assume the resistance is 120(f) pounds.
Assume the acceleration of gravity is 32 ftfsec® and find explicit formulas for the speed v(f)
at time . (You may use the approximation e™% = 37/128 in your calculations.)

5. Refer to Example 2 of Section 8.6, Use the chain rule to write

dv  dsdp dv

and thus show that the differential equation in the example can be expressed as follows:

ds by

&y c—1v’

where b = mjk and ¢ = gm/k. Integrate this equation to express s in terms of v. Check your
result with the formulas for v and s derived in the example.

6. Modify Example 2 of Section 8.6 by assuming the air resistance is proportional to »% Show
that the differential equation can be put in each of the following forms:

ds m v ) dt
d kot~ dv

1

m
k& -

where ¢ = v/ mg/k. Integrate each of these and obtain the following formulas for v:

et — efht

mg y
Ul T AP

= ¢ tanh bt ,

where b = 4/kg/m, Determine the limiting value of v as f —+ + co.
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7. A body in a room at 60° cools from 206° to 120” in half an hour,

(a) Show that its temperature after ¢ minutes is 60 4 140¢7%%, where & = (fog 7 - log 3)/30.
(b) Show that the time ¢ required to reach a temperature of 7 degrees is given by the formula
t == [log 40 — log (T — 60)]/k, where 60 < T < 200,

(c} Find the time at which the temperature is 90°.

(d) Find a formula for the temperature of the body at time ¢ if the room temperature is not
kept constant but falls at a rate of 1° edch ten minutes. Assume the room temperature is 60°
when the body temperature is 200°,

8. A thermometer has been stored in a room whose temperature is 75°. Five minutes after being
taken outdoors it reads 65°. After another five minutes, it reads 60°. Compute the outdoor
temperature. )

9. In a tank are 100 gallons of brine containing 50 pounds of dissolved sajt. Water runs into the
tank at the rate of 3 gallons per minute, and the concentration is kept uniform by stirring.
How much salt is in the tank at the end of one hour if the mixture runs out at a rate of 2 galions
per minute?

10. Refer to Exercise 9. Suppose the bottom of the tank is covered with a mixture of salt and in-
soluble material. Assume that the salt dissolves at a rate proportional to the difference between
the concentration of the solution and that of a saturated solution (3 pounds of salt per ga.]ldn),
and that if the water were fresh 1 pound of salt would dissolve per minute, How much salt
will be in solution at the end of one hour?

“11. Consider an electric circuit like that in Example 3 of Section 8.6. Assume the electromotive
force is an alternating current generator which produces a voltage V() = Esin of, where E
and o are positive constants (w is the Greek letter omega). - If 1{0) = 0, prove that the current
has the form _ n

Eol

sin (wf — &) + ————— & BHL

1) =
@ R F o2’

£
VR ¥ otl2

where o depends only on @, I, and K. Show that « = 0 when L =0,

i2. Refer to Example 5 of Section 8.6. Assume the impressed voltage is a step function defined as
follows: E() = Eifa < ¢t < b, where a > 0; E(7) == 0 for all other ¢£. If J/(0) =0 prove that
the current is given by the following fermulas: I(f) = 0 if ¢ < a;

E E
I(t) = E 1 - e-—R(t—aJ/L) if a<t<b; It = ﬁ Pl (eRwL — eRm!L) if r>b.

Make a sketch indicating the nature of the graph of 1.

Population growth. In a study of the growth of a population (whether human, animal, or bac-
terial), the function which counts the number x of individuals present at time ¢ is necessarily a step
function taking on only integer values. Therefore the true rate of growth dxjdt is zero (when ¢ lies
in an open interval where x is constant), or else the derivative dx/dt does not exist (when x jurmps
from one integer to another). Nevertheless, useful information can often be obtained if we assume
that the population x is a continuous function of ¢ with a continuous derivative dx/dt at each
instant. We then postulate various “laws of growth” for the pepulation, depending on the factors
in the environment which may stimulate or hinder growth.

For example, if environment has littie or no effect, it seems reasonable to assume that ihe rate
of growth is proportional to the amount present. The simplest kind of growth law takes the form

dx
(8.20) = =k,
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where k is a constant that depends on the particular kind of population. Conditions may develop
which cause the factor £ to change with time, and the growth law (8.20) can be generalized as
follows:

dx
@2 s = k(x .

If, for some reason, the population cannot exceed a certain maximum M (for example, because
the food supply may be exhausted), we may reasonably suppose that the rate of growth is jointly
proportional to both x and M — x. Thus we have a second type of growth law:

dx

(8.22) == kx(M — x),

where, as in (8.21), & may be constant or, more generally, k may change with time. Technoiogical
improvements may tend to increase or decrease the value of M slowly, and hence we can generalize
(8.22) even further by allowing M to change with time.

13. Express x as a function of # for each of the “growth laws” in (8.20) and (8.22) (with & and M
both constant). Show that the result for (8.22) can be expressed as follows: ’

M
(8.23) * =T T e—ali—t?

where « is a constant and ¢, is the time at which x = M/2,

14, Assume the growth taw in formula (8.23) of Exercise 13, and suppose a census is taken
at three equally spaced times #;, ¢, f3, the resulting numbers being x;, x, , x3 . Show
that this suffices to determine M and that, in fact, we have

Xy(xg — Xp) — x(x3 — x9)
- XY = xyXg ’

(8.24) M=x,

15. Derive a formula that generalizes (8.23) of Exercise 13 for the growth law (8.22) when k& ix
not necessarily constant. Express the result in terms of the time 1, for which x = M/2.

16, The Census Bureau reported the following population figures (in millions) for the Unitec
States at ten-year intervals from 1790 to 1950: 3.9, 5.3, 7.2, 9.6, 12.9, 17, 23, 31, 39, 50, 63, 76
92, 108, 122, 135, 150.

{a) Use Equation (8.24) to determine a value of M on the basis of the census figures for 1790
1830, and 1910,

(b) Same as (a) for the years 1210, 1930, 1950.

(c) On the basis of your calculations in (a) and (b), would you be inclined to accept or reject
the growth law (8.23) for the population of the United States?

17. (a) Plot a graph of log x as a function of ¢, where x denotes the population figures quoted
in Exercise 16, Use this graph to show that the growth law (8.20) was very nearly satisfied from
1790 to 1910. Determine a reasonable average value of & for this period.

(b} Determine a reasonable average value of k for the period from 1920 to 1950, assume that
the growth law (8.20) will hold for this %, and predict the United States population for the
years 2000 and 2050.

18. The presence of toxins in a certain medium destroys a strain of bacteria at a rate jointly pro-

portional {o the number of bacteria present and to the amount of toxin. I there were no
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FrGure 8.3 Exercise 18.

toxins present, the bacteria would grow at a rate proportional to the amount present. Let x
denote the number of living bacteria present at time 7. Assume that the amount of toxin is
increasing at a constant rate and that the production of toxin begins at time # = 0. Setup a
differential equation for x. Solve the differential equation. One of the curves shown in Figure
8.3 best represents the general behavior of x as a function of 2. State your choice and explain
your reasoning.

8.8 Linear equations of second order with constant coefficients

A differential equation of the form
Y+ P + Pufxly = R()

is said to be a linear equation of second order. The functions P; and P, which multiply the
unkaown function y and its derivative " are called the coefficients of the equation.

For first-order linear equations, we proved an existence-uniqueness theorem and deter-
mined all solutions by an explicit formula. Although there is a corresponding existence-
uniqueness theorem for the general second-order linear equation, there is no explicit
formula which gives all solutions, except in some special cases. A study of the general
linear equation of second order is undertaken in Volume II. Here we treat only the case
in which the coefficients P, and P, are constants. When the right-hand member R{(x) is
identically zero, the equation is said to be Aomogencous.

The homogeneous linear equation with constant coefficients was the first differential
equation of a general type to be completely solved. A solution was first published by Euler
in 1743. Apart from its historical interest, this equation arises in'a great variety of applied
problems, so its study is of practical importance. Moreover, we can give explicit formulas
for all the solutions.

Consider a homogeneous linear equation with constant coefficients which we write as
foliows:

YV4a+by=0.

Existence of solutions of the equation y" + by = 0 323

We sezk solutions on the entire real axis (— oo, + o). One solution is the constant function
3 = 0. This is called the frivial solution. We are interested in finding nontrivial solutions,
and we begin our study with some special cases for which nontrivial solutions can be found
by inspection. In all these cases, the coefficient of y' is zero, and the equation has the form
" + by = 0. We shall find that solving this special equation is fantamount to solving the
general case.

8.9 Existence of solufions of the equation " + by = 0

EXAMPLE 1. The equation y* = 0. Here both coefficients a and 4 are zero, and we can
easily determine all solutjons. Assume y is any function satisfying " = 0 on (—co, + o).
Then its derivative y’ is constant, say " = ¢; . Integrating this relation, we find that y
necessarily has the form

y=o0x+c,

where ¢, and ¢, are constants. Conversely, for any choice of constants ¢; and ¢, , the linear
polynomial y = ex + ¢, satisfies " = 0, so we have found all solutions in this case.

Next we assume that & 560 and treat separately the cases 6 < O and & > 0.

EXAMPLE 2. The equation y” + by = 0, where b < 0. Since b < 0, wecan write b = —k?,
where & > 0, and the differential equation takes the form

yu — kzy i

One cbvious solution is y = ¢, and another is y == ¢™**. From these we can obtain
further selutions by constructing linear combinations of the form

y = Cle?:a: 4 czegkw,

where ¢; and c, are arbitrary constants. It will be shown presently, in Theorem 3.6, that
all solutions are included in this formula.

EXAMPLE 3. The equation y” + by = 0, where b > 0. Here we can write b = k®, where
k > 0, and the differential equation takes the form

y” - _kgy .

Again we obtain some solutions by inspecticn. One solution is y = cos kx, and another
is y = sin kx. From these we get further solutions by forming linear combinations,

y = coskx - ¢ysinkx,

where ¢, and ¢, are arbitrary constants. Theorem 8.6 will show that this formula includes
ail sclutions.
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8.10 Reduction of the general equation to the special case y” 4 by = 0

The problem of solving a second-order linear equation with constant coefficients can
be reduced to that of solving the special cases just discussed. There is a method for doing
this that also applies to more general equations. The idea is to consider three functions
¥ #, and v such that y = up. Differentiation gives us y' = w’ + v, and 3" = w" +
2u's" 4 u"v. Now we express the combination p" + ay’ + by in terms of u and ». We
have

(8.25) V' Fay + by =w 4+ 2 u" + alw’ + u'v) + b

= (0" + av’ + boju 4 (20" 4 ey’ + vi’,
Next we choose v to make the coefficient of 4’ zero. This requires that »’ == —arf2, s0 we
may choose » = ¢~**/%, For this » we have v" = —av'[2 = a®v/4, and the coefficient of
1 in (8.23) becomes )

a’s  a¥ 4b - a*
o + r by = — — — by =
av’ -+ bv 2 > -+ be 4

Thus, Equation (8.25) reduces to

2
yn+ay1 + by': (uH +4b ';‘ a. i‘.!)v.

Since v = e~**/2, the function v is never zero, so y satisfies the differential equation y" +
@y’ + by = 0 if and only if u satisfies " + 1456 — a®u = 0. Thus, we have proved the
following theorem.

THEOREM 8.4.  Let y and u be two functions such that y = wue="2. Then, on the interval
(—o0, +o0), y satisfies the differential equation 3" + ay’ + by = 0 if and only if u satisfies
the differential equation

Y
un_i_f;fl_z__@.umo_

This theorem reduces the study of the equation " + ay’ + by = 0 to the special case
Y+ by = 0. We have exhibited nontrivial solutions of this equation but, except for the
case b = 0, we have not yet shown that we have found alf solutions,

8.11 Uniqueness theorem for the equation y” - by = 0

The problem of determining all solutions of the equation »” + by = 0 can be solved
with the help of the following unigueness theorem.

THEOREM 8.5.  Assume two functions f and g satisfy the differential equarion y" -+ by = 0
on (— 0, + o). Assume also that [ and g satisfy the initial conditions

SO =g, [0 =g0).
Then f(x) = g(x) for all x.
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Proof. Let h(x) = f(x) — g(x). We wish to prove that A(x) == 0 for all x. We shall
do this by expressing # in terms of its Taylor polynomial approximations.

First we note that / is also a solution of the differential equation y* -+ by = 0 and satisfies
the initial conditions i{0) = 0, #'(0) = 0. Now every function y satisfying the differential
equation bas derivatives of every order on (—o0, + ) and they can be computed by
repeated differentiation of the differential equation. For example, since p" = —by, we
have y" = —by", and y¥' = —by" = by, By induction we find that the derivatives of
even order are given by

y(2ﬂl = (_ 1)%”}’,

while those of odd order are p®—1 = (—1)*1p""Yy'. Since A(0) and /'(0) are both 0, it
follows that all derivatives #'™(0) are zero, Therefore, each Taylor polynomial generated
by # at 0 has all its coefficients zero.

Now we apply Taylor’s formula with remainder (Theorem 7.6), using a polynomial
approximation of odd degree 27 — [, and we find that

Hx) = By, 1(x),

where E,,_;(x) is the error term in Taylor’s formula. To complete the proof, we show that
the error can be made arbitrarily smali by taking n large enough,

We use Theorem 7.7 to estimate the size of the error term. For this we need estimates
for the size of the derivative A*™. Consider any finite closed interval [—c, ¢}, where ¢ > 0.
Since [ is continuous on this interval, it is bounded there, say [h(x)] < M on [—¢, ¢].
Since A" (x} = (—1)*b"A(x), we have the estimate [F*™(x)] < M |#|" on [—¢, ¢]. Theorem
7.7 gives us | Ey, (x)] < M |b|™ x2"/(2n)! so, on the interval [—c, ¢], we have the estimate

Mujinxmu Mlb]" Cz-u _ MABn
@l T ) (2n)!

(8.26) 0 < k)] <

H

where A = [6]'2 ¢. Now we show that 4A™jm! tends to 0 as m — 4 co. This is obvious if
04 <1 If 4> 1, we may write

A" _ A A A _4 A ﬁi_"(__A_)"H‘
ml 1 2 kk+1 mTEkNk+1 °

where k < m. If we choose k to be the greatest integer < A, then A4 < k + 1 and the last
factor tends to O as m — +-c0. Hence 4™/m! tends to 0 as m -+ o9, 50 inequality (8.26)
shows that i(x) = 0 forevery x in [—c, ¢]. But, since ¢ is arbitrary, it follows that #(x} = 0

. for ali real x. This completes the proof.

Note: Theorem 8.5 tells us that two solutions of the differential equation y* + by = 0
which have the same value and the same derivative at (0 must agree everywhere. The choice
of the point 0 is not essential. The same argument shows that the theorem is also true if 0
is replaced by an arbitrary point ¢. In the foregoing proof, we simply use Taylor poly-
nomial approximations at ¢ instead of at 0.
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8.12 Complete solation of the equation y” + &y = 0

The uniqueness theorem enables us to characterize all solutions of the differential
equation 3" + by = 0.

THEOREM 8.6. Given a real number b, define two functions u, and u, on (= o0, 4 0) a5
Soliows:

(a) If b =0, let uy(x) = 1, uy(x) = x.

(b) If b < O, write b = —k* and define uy(x) = &, uy(x) = e,

(c) If b > 0, write b = k* and define u(x) = cos kx, uy(x) == sin kx,
Then every solution of the differential equation y" + by = 0 on (— o, + o) has the form

(8.27 - y= eyt (%) + o),
where ¢y and ¢, are constants.

Proof. We proved in Section 8.9 that for each choice of constants ¢; and ¢, the function
 givenin (8.27) is a solution of the equation ¥" + by = 6. Now we show that all solutions
-have this form. The case & = 0 was settled in Section 8.9, so we maw assume that & # 0,
The idea of the proof is this; Let y = f(x) be any solution of " + by = 0. If we can
show that constants ¢; and ¢, exist satisfying the pair of equations

(8.28) €yt (0) + ¢, (0) = f(0),  ea(0) + cup(0) = f(0),

then both fand ¢u; - cauy are solutions of the differential equation y* + &y == 0 having
the same value and the same derivative at 0. By the uniqueness theorem, it follows that
f=cun + cyiig .

In case (b), we have u{x) = ", up{x) = &7, 50 t,(0) = w,(0) = | and w0} =k,
u,(0) = —k. Thus the equations in {8.28) become ¢ + ¢, = f(0), and ¢; — ¢ = f/(0)/k.
They have the selution ¢; = 1/(0) + £ (0)k, ¢ = L7 (0) — 1/ {0)/k.

in case {c), we have u;(x) = cos kx, uy(x) = sin kx, 50 u,(0) = 1, uy(0) = 0, u;(0) = 0,
1,{0) = k, and the solutions are ¢, = f(0), and ¢; = f'(0)fk. Since ¢; and ¢, always exist
to satisfy (8.28), the proof Is complete.

813 Complete solution of the equation y" + ay’ + by = 0

Theorem 8.4 tells us that y satisfies the differential equation " + ay' + by =0 if
and only if u satisfies 4" + }(4b — a®u = 0, where y = ¢~*/%. From Theorem 8.6 we
know that the nature of each solution « depends on the algebraic sign of the coefficient of
u, that is, on the algebraic sign of 46 — & or, alternatively, of ® ~ 4b. We call the number
a* — 4b the discriminant of the differential equation " 4+ ay’ + by = 0 and denote it by
d. When we combine the results of Theorem 8.4 and 8.6 we obtain the following.

THEOREM 8.7. Let d = a® — 4b be the discriminant of the linear differential equation
¥ + ay’ + by = 0. Then every solution of this equation on (— o, + <o) has the form

(8.29) ¥ = e eyun(%) + caua(x)]
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where ¢y and ¢, are constants, and the functions w, and u, are determined according to the
algebraic sign of the discriminant as follows:

(@) If d =0, then w{x) = | and uy(x) = x.

(b) If d > 0, then uy(x) = & and uy(x) = ™, where k = Wd.

(€) If d < 0, then u,(x) = cos kx and uy(x) = sin kx, where k = 2\/ —d.

Note: Incase (b), where the discriminant d is positive, the solution y in (8.29) is a linear
combination of two expenential functions,

y = ewaa:.v‘z{cle!m + 62877"2) = clerlm + Cze'rzm,

where
a —a +4/d a % —~a —-/d
ne-gtk=——m—, n=-j-k=——p—.
The two numbers #; and #, have swm ¢y + £, = —a and product sy = Ha® —d) = b,

Therefore, they are the roots of the quadratic equation
Ptar+b=0.
This is called the characteristic ‘equatr'an associated with the differential equation
Yooy +by=0.

The number d == ¢ — 48 is also called the discriminant of this quadratic equation; its
algebraic sign determines the nature of the roots. Hd > 0, the quadratic equation has real
roots given by (—a £ ‘\/d-),';. If 4 < 0, the quadratic equation has no real roots but it
does have complex roots »; and r, . The definition of the exponential function can be ex-
tended so that £"1* and ™" are meaningful when ry and r, are complex numbers. This ex-
tension, described in Chapter 9, is made in such a way that the linear combination in
(8.29) can also be written as a linear combination of e"¥ and ™", when r, and r, are
comiplex. '

We conclude this section with some miscellaneous remarks. Since all the solutions of
the differential equation y* + ay’ + by = 0 are contained in formula (8.29), the lincar
combination on the right is often called the general solution of the differential equation.
Any sclution obtained by specializing the constants ¢; and ¢y is called a particular solution.

For example, taking c; = 1, ¢; = 0, and then ¢; = 0, ¢; = 1, we obtain the two particular
solutions

b, = e" "%y (x), vy = e 2uy(x) .

These two solutions are of special importance because linear combinations of them give
us all solutions. Any pair of solutions with this property is cailed a basis for the set of
all solutions.

A differential equation always has more than one basis. For example, the equation
y" = 9y has the basis v; = &%, p, = "%, But it also has the basis w; = cosh 3x, w; =
sinh 3x. In fact, since &% = w, 4 wy and 7% == wy — w, , every linear combination of %*
and =% is also a linear combination of w, and w, . Hence, the pair w; , w, Is another basis.

It can be shown that any pair of solutions », and v, of a differential equation y* +
ay’ + by = 0 will be a basis if the ratio vy/v, is not constant. Although we shall not need
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this fact, we mention it here because it is important in the theory of second-order linear
equations with nonconstant coefficients. A proof is outlined in Exercise 23 of Section 8.14,

8.14 Exercises

Find all solutions of the following differential equations on (—, +®).

1Ly —4y =0 6,y 4+ 2y -3y =0,
2.y 4y =0 Ty =2 +2y=0.
3.y —4y =0. 8.y =2 +5y =0
4.y +4y =0. 9. ¥y + 2y +y =0

5.9 =2y +3y =0 10. y" — 2y +y =0.

In Exercises 11 through 14, find the particular solution satisfying the given initial COHdlthDS

11. 20" + 3y =0, withy =t and y =1 whenx = 0,

12. y* + 25y =0, with y = —1 and y* = 0 when x = 3.

13,y —4y' —y =0,withy =2and y = —1 when x = 1.

4, y* +4y +5p =0, withy =2 and y’ =y’ whenx = 0.

15. The graph of a solution # of the differential equation y* — 4" + 29y = 0 intersects the graph
of a solution v of the equation 3" + 4y + 13y = 0 at the origin. The twg curves have equal
slopes at the origin. Determine u and v if & (Fm =1,

16. The graph of a solution  of the differential equation y” — 3y” — 4y = O intersects the graph
of a solution v of the equation y* + 4y = 5y = 0 at the ongm Determine u and v if the two
curves have equal slopes at the origin and il

i oix}* 35
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17. Find all values of the constant & such that the differential squation y” + ky = 0 has a non-
trivial solution y = fi.(x} for which f;(0) = (1} = 0. For each permissible value of &, deter-
mine the corresponding solution y = f;,(x). Consider both positive and negative values of k.

18. If (a, B) is a given point in the plane and if m is a given real number, prove that the differential
equation y* + k®y = @ has exactly one solution whase graph passes through (a, b) and has the
slope m there. Discuss also the case & = 0.

19. (a) Let {a,, &;) and {(a, , &) be two points in the plane such that a; — @, # =, where n is an
integer. Prove that there is exactly one solution of the differential equation »* -+ y = 0 whose
graph passes through these two points,

(b) Is the statement in part (a} ever true if @; — 43 is a multiple of =7

{c) Generalize the result in part (a) for the equation y” + k*y = 0. Discussalso thecase & = 0.
20. In each case, find a linear differential equation of second order satisfled by u and u; .

(a) wuy(x} = &, uy(x) = "

(b) w(x) = €, u(x) = xe®,

© ux) = &2 cos x, u(x) = e/ in x.

(d) wy(x) = sin (Zx + 1}, m(x) = sin (2x + 2).

() u,(x) = cosh x, u,(x) = sinh x.

The Weonskian. Given two functions i and u, , the function W defined by W (x) = w (Xug(x)y —
uy(yu(x) is called their Wronskian, after J. M. H. Wronski (1778-1853). The following exercises
are concerned with properties of the Wronskian.,

21. (a) If the Wronskian W(x) of u; and a, is zero for all x in an open intervat I, prove that the
guotient uy/s; is constant on I, In other words, if tiyfory 18 nOt constant on I, then W(c) £ 0
for at least one ¢ in I.
(b) Prove that the derivative of the Wronskian is W’ = uuj — gy .
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22. Let W be the Wronskian of two solutions #, , #, of the differential equation y” + ay’ + &by =0,
where ¢ and b are constants.
(a) Prove that W satisfies the first-order equation ¥ + a¥ = 0 and hence W(x) = W(0)e 2=,
Thig formula shows that if B/(0) # 0, then W (x) # 0 for all x,
{b} Assume u; is not identically zero. Prove that W(0) = 0 if and only if uyfw is constant,

23. Let vy and v, be any two solutions of the differential equation p” + ay’ + by = 0 such that
vyfv; is not constant.
{a) Let y = f(x) be any solution of the differential equation. Use properties of the Wronskian
to prove that constants ¢; and ¢, exist such that

en(0) +600) = FO),  ¢pi(0) + cpi0) = f10) .

(b) Prove that every sclution has the form y = ¢y + cprp . In other words, », and o, form
a basis for the set of all solutions.

8.15 Nonhomogeneous linear equations of second order with constant coefficients
We turn now to a discussion of nonhomogeneous equations of the form
(8.30) ¥ 4+a+by=R,
where the coefficients a and  are constants but the righi-hand member R is any function
continuous on (— oo, +o0). The discussion may be simplified by the use of operator

notation. For any function f with derivatives /” and f”, we may define an operator £
which transforms finto another function L(f) defined by the equation

Lify=f"+af + bf.
In operater notation, the differential equation (8.30) is written in the simpler form
L(y) ==

1t is easy to verify that L{y, + y») = L{y1) + L(yg), and that L(cy) = cL()) for every
constant ¢. Therefore, for every pair of constants ¢, and ¢y, we have

L(C1}'1 - caya) = il(y) + cal(y}

This is cailed the linearity property of the operator L,
Now suppose y, and y, are any two solutions of the equation L(y} = R. Since L(yy) =
L(yz) = R, linearity gives us

L(Ya )’1) = L(]/z) - L(_]’;) = R .R = 0

80 ¥y — Jy Is a solution of the homogeneous equation I(y) == 0. Therefore, we must have
— 3, = oyt + gy, where oppy + ¢, is the general solution of the homogeneous
equation, or
Yo = 010y + ¥y - F1-
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This equation must be satisfied by every pair of solutions y, and y, of the nonhomogeneous
equation L{y) = R. Therefore, if we can determine one particular solution yy of the non-
homogeneous equation, a// solutions are contained in the formula

{8.31) y= e+ Cbp + Y1

where ¢, and ¢, are arbitrary constants. Each such p is clearly a solution of L(y)= R
because L(cioy 4 cote + y1) = Loy, + g0} + L(y) = 0 + R = R. Since all scluticns
of L(y) = R are found in (8.31), the linear combination c;v; + 03 -+ 1 is called the general
solution of (8.30). Thus, we have proved the following theorem.

THEOREM 8.8. If y is a particular solution of the nonhomogeneous equation L(y) = R,
the general solution is obtained by adding to y the general solution of the corresponding
homogeneous equation L{y) = 0.

-

Theorem 8.7 tells us how to find the general solution of the homogeneous equatibn
L{y) = 0. It has the form y = e;py -+ cuvy , Where

(8.32) 0y(x) = e S lu(x),  vy(x) = e 2uy(x)

the functions u, and w, being determined by the discriminant of the equation, as described
in Theorem 8.7. Now we show that v; and v, can be used to construct a particular solution
3, of the nonhomogeneous equation L(y) = R.

The construction involves a function W defined by the equation

W(x} = o{x)oylx) — valx)or(x) -

This is called the Wronskian of v, and v, ; some of its properties are described in Exercises
21 and 22 of Section 8.14. We shall need the property that #(x} is never zero. This can be
proved by the metheds outlined in the exercises or it can be verified directly for the particular
functions v, and v, given in (8.32).

THEOREM 8.9. Let v, and vy be the solutions of the equation L{y) = 0 giver by (8.32),
where L{y) = y" 4 ay’ + by. Let W denote the Wronskian of v, and v,. Then the non-
homogeneous equation I(y) = R has a particular solution y, given by the formula

Jikx) = ()0 (x) + LIxvx)
where
R(x)

(8.33) 1{x) = -*—J‘UZ(X) W"("x_:) d

R(x)
W(x)

dax .

) = [0
Proof. Let us try to find functions #; and #, such that the combination y, = tp, + by

will satisfy the equation L(»,) = R. We have

’

¥ =t + ta, + (e, + 1p,),

i

i o= o] + by (e + o) b (e F ) .
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When we form the linear combination L(y) = y| + @y -+ by, the terms involving 4
and t; drop out because of the relations L{p} = L{v,) = 0. The remaining terms give us
the relation

Liyy) = (o] 4 tyog) -+ (g -+ t05) + altiv; 4 tiv) .

We want to choose ¢, and #, so that L{y;) = R. We can satisfy this equation if we choose
t, and ¢, so that :

oy + typy =0 and 1oy + toeg = R.

This is a pair of algebraic equations for #; and #;. The determinant of the system is the
Wronskian of v; and v, . Since this is never zero, the system has a solution given by

13 = —0,R/W and 1y = n RIW.
Integrating these relations, we obtain Equation (8.33), thus completing the proof,

The method by which we obtained the solution p, is sometimes called variation of param-
eters. It was first used by Johann Bernoulli in 1697 to solve linear equations of first order,
and then by Lagrange in 1774 to solve linear equations of second order.

Note: Since the functions #; and #, in Theorem 8.9 are expressed as indefinite integrals,
each of them is determined only to within an additive constant, If we add a constant ¢;
to t; and a constant ¢, o #, we change the function y; to a new function y, = 3y + ¢y +
cyly . By linearity, we have

Liyy = L()ﬁ) + Llcywy + cgvy) = L{y),
so the new function y, is also a particular seiution of the nonhomegeneous equation.

gxaMpLE 1. Find the general solution of the equation y” -+ y = tan x on (—af2, m/2).

Solution. ‘The functions v, and v, of Equation (8.32) are given by .
(X} = cos x, vs{X) = sinx .

Their Wronskian is W(x) = vi{x)og(x) — 02(x)1(x) = cos® x + sin? x = 1. Therefore Equa-
tion (8.33) gives us

t(x) = ~ fsin X tan x dx == sin x — log [sec x + tan x{,
and

1(x) == fcosxtanxdx = ~fsinx dx = —cos x,
Thus, a particular solution of the nonhomoegeneous equation is

¥ = H(x)(x) - 15(x)v(x) = sin x cos x — cos x log {sec x + tan x| — sin x cos x

= —cos x log |sec x + tan x] .
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By Theorem 8.8, its general solution is
y = ¢; C08 X + ¢y 5in x — cos x log {sec x + tan x|.

Although Theorem 8.9 provides a general method for determining a particular solution
of L{y) = R, special methods are available that are often easier to apply when the function
R has certain special forms. In the next section we describe a method that works when R

is a polynomial or a polynomial times an exponential.

8.16 Special methods for defermining a particular solution of the nonhomegeneous equation
» +ay 4 by=R

CASE 1. The right-hand member R is a polynomial of degree n. If b # 0, we can always
find a polynomial of degree n that satisfies the equation. We try a polynomial of the form

ylx) = Z 1y %"
foanr

with undetermined coefficients. Substituting in the differential equation Z{y) = R and
equating coefficients of like powers of x, we may determinea, , @, 1, - - - , & » gy i SUCCEssion,
The method is iflusirated by the following example. '

ExaMPLE 1. Find the general sofution of the equation »* -+ y = »%

Solution. The general solution of the homogeneous equation y" + y = 0 is given by
¥ = ¢y 08 x + cgsin x. To this we must add one particular solution of the nonhomogeneous
equation. Since the right member is a cubic polynomial and since the coefficient of y is
nonzero, we try to find a particular solution of the form y,(x) = Ax* + Bx* + Cx + D.
Differentiating twice, we find that y"(x) = 64x + 2B. The differential equation leads to

the relation
(64x + 2B) + (Ax® + Bx* + Cx + D) = x°.

Equating coefficients of like powers of x, we obtaimd = 1,8 =0,C= —6,and D =0,
so a particular solution s yy(x) = x* — 6x. Thus, the general solution is

¥ =10,008 X + cgsinx + x* ~ 6x.

It may be of interest to compare this method with variation of parameters. Equation
(8.33) gives us

tx) = — fxs sinx dx = —(3x* — ) sinx + (x* — 6x) cos x
and

ty(x) = fx3 cos x dx = (3x* — 6} cos x + (x* — 6x)sin x .

When we form the combination t;n, -+ £y, , we find the particular soletion y,(x) = x* — 6x,
as before. In this case, the use of variation of parameters required the evaluation of the
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integrals fx®sin x dx and {x*cos x dx. With the method of undetermined coeficients, no
integration is required.

If the coefficient b is zere, the equation ¥ + 4y’ = R cannot be satisfied by a polynomial
of degree a1, but it can be satisfied by a polynomial of degree n + | if @ 5 0. If both ¢ and
b are zero, the equation becomes ¥ = R; its general solution is a polynomial of degree
n + 2 obtained by iwo successive integrations. .

CASE 2. The right-hand member has the form R(x) = p(x)e™, where p is a polynomial
of degree n, and m is constant.

In this case the change of variable y = u(x)e™ transforms the differential equation
¥" 4+ ay’ + by = R to a new equation,

u 4+ (2m+ ' (mE Aam - Du=p.

This is the type discussed in Case | so it always has a polynomial solution u; . Hence, the
original equation has a particular solution of the form y, = u(x)e™, where u, is a poly-
nomial. If m? + am + & # 0, the degree of u; is the same as the degree of p. If m® 4
am + b =0 but 2m + a # 0, the degree of w, is one greater than that of p. If beth
m? 4 am + b = 0 and 2m + a = 0, the degree of u; is two greater than the degree of p.

exAMPLE 2. Find a particular solution of the-equation 3" - y = xe™.

Solution. 'The change of variable y = we® leads to the new equation u” + 6u' +
10u = x. Trying w,(x} = Ax + B, we find the particular solution #,(x) = (5x — 3)/30, so
a particular solution of the original equation is 3y = *{(5x — 3}/50.

The method of undetermined coefficients can also be used if R has the form R(x) =
px)e™ cos ax, or R{x) = p(x)e™ sin ax, where pis a polynomial and nt and e are constants.
In either case, there is always a particular solution of the form yi(x) = e™[g{x) cos ax +
r(x) sin ax], where ¢ and r are polynomials.

8.17 Exercises

Find the general solution of each of the differential equations in Exercises 1 through 17. If the
solution is not valid over the entire real axis, describe an interval over which it is valid.

Ly —y==x Sy +y =2y =¢

2.y —y =x% 10, ¥" 4y — 2y = &2,

Ly by =x 4 dx 11 y" +y — 2y = & + €%,

4,y =2y + 3y =28 12 " =2 +y =x + 2x e

5. =5y 44y =x2—2x + L. 13,y 4 2y ~+ y = e™[x%

6.y ¥ —6p =228 £ 5x2 —Tx + 2. 14, ¥ +y = cot®x.

7y —dy = e, 15. " =y = 2j(1 + &),

8. ¥+ 4y =¥ 16. " + ¥ — 2y = "1 + &%),

7. V" 4+ 6y + 9y = f(x), where f(x) = 1 for ] €.x <2, and f(x) = 0 for all other x.

18. If £ is a nonzero constant, prove that the equation y* — k% = R(x) has a particular solution

1 given by
I ;
hn= —j R(z) sinh fe(x — ) de .
k Jy

Find the general solution of the equation y” — 9y = €5,
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19. ¥ k is a nonzero constant, prove that the equation ¥* + &% = R(x) has a particular solution
¥y given by

1 @
P = EL R(H) sin k{x — ) dr .

Find the general solution of the equation y” + 9y = sin 3x.

In each of Exercises 20 through 25, determine the general solution.
20,y +y=sinx, 23, y" 4+ 4y = 3xsinx,
21. y" +y =cosx. 24, y" — 3y = 2sinx.
22, y" + 4y = Ixcosx. 25. p" +y = e cos dx.

-

8.18 Examples of physical problems leading to linear second-order equations with constant
coefficients

EXAMPLE 1. Simple harmonic motion. Suppose a particle is constrained to move in a
straight line with its acceleration directed toward a fixed point of the line and proportional
to the displacement from that point. If we take the origin as the fixed point and let y be
the displacement at time x, then the acceleration »* must be negative when y is positive,
and positive when p is negative. Therefore we can write p” = —K&%y, or

ylr+k2yz0’

where k2 is a positive constant. This is called the differential equation of simple harmonic

motion. Tt is often used as the mathematical mode! for the motion of a point on a vibrating

mechanism such as a plucked string or a vibrating tuning fork. The same equation arises

in electric circuit theory where it is called the equation of the harmonic osciliator,
Theorem 8.6 tells us that all solutions have the form '

(8.34) y = Asinkx + Bceoskx,

where A4 and B are arbitrary constants. We can express the solutions in terms of the sine
ot cosine aione. For example, we can introduce new constants C and o, where

C=VA+ B and azarctan%,
then we have (see Figure 8.4) 4 = Ccos «, B = Csin «, and Equation (3.34} becomes
y = Ccos o sin kx + Csin o cos kx = Csin (kx + o) .

When the solution is written in this way, the constants C and « have a simpie geometric
interpretation {see Figure 8.5). The extreme values of y, which occur when sin (kx + o) =
41, are +C. When x = 0, the initial displacement is Csin «. As x increases, the particle
oscillates between the extreme values +-C and —C with period 2=/k. The angle kx + o
is called the phase angle and « itself Is called the initial value of the phase angle,

Physical problems leading to linear second-order equations with constant coefficients 335
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Period = =
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Figure 8.4 ) FiGure 8.5 Simpie harmonic motion.

EXAMPLE 2. Damped vibrations. Il a particle undergoing simple harmonic motion is
suddenly subjected to an external force proportional to its velocity, the new motion satisfies
a differential equation of the form

YE 2+ k=0,

where ¢ and &% are constants, ¢ # 0, & > 0. If ¢ > 0, we will show that all solutions tend
to zero as x — +00. In this case, the differential equation is said to be stable. The external
force causes damping of the motion. If ¢ <0, we will show that some solutions have
arbitrarily large absolute values as x — +4oo. In this case, the equation is said to be
unstabie.

Since the discriminant of the equation is d = (2¢)? — 4k? = 4(c* — k%), the nature of
the solutions is determined by the relative sizes of ¢® and &%, The three cases d = 0,d>0,
and d < 0 may be analyzed as follows:

(a) Zero discriminant. c? = k2% In this case, all solutions have the form

y = (4 + Bx).

If ¢ > 0, all solutions tend to 0 as x — +co. This case is referred to as critical damping.
I B # 0, each solution will change sign exactly once because of the linear factor 4 + Bx.
An example is shown in Figure 8.6(a). If ¢ < 0, each nontrivial solution tends to + oo or
1o —o0 as x — 40,

{b) Positive discriminant: ¢* > k*. By Theorem 8.7 all solutions have the form

y= e—cr(Ae."w + B&'“M) = Aeth—o)% + Be*(fﬂrc)x’

where h = $Vd = Vc® — k% Since h? = ¢® — k2, we have A2 — ¢® < Oso (h=cYh4 o)<,
Therefore, the numbers & — ¢ and A -+ ¢ have opposite signs. If ¢ > 0, then 4 + ¢ is
positive so i — ¢ is negative, and hence both exponentials e and ~*+9* tend to zero
as x — +oo. In this case, referred to as overcritical damping, all solutions tend to 0 for
large x. An example is shown in Figure 8.6(a). Each solution can change sign at most
once.

If ¢ < 0, then 2 — ¢ is positive but & + ¢ is negative. Thus, both exponentials et
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and e+ tend to + oo for large x, so again there are solutions with arbitrarily large

absolute values.
(c) Negative discriminans: c* < i In this case, all solutions have the form

y = Ce®sin {(hx + o),

where # = 3}V —d = ViE ¢t If ¢> 0, every nontrivial solution oscillates, but the
amplitude of the oscillation decreases to U as x — + 0. This case is called undercritical
damping and is illustrated in Figure 8.6(b). 1f ¢ < 0, all nontrivial solutions take arbitrazily
large positive and negative values as x — +co. ~

iti i S U critical d in
Overcritical damping . Undereritical damping

~_ [

Critical damping >

(a) Discriminant 0 or positive (b) Discriminant negative

FrGurk 8:6 Damped vibrations occurring as solutions of y* + 2¢p” + Kty =0, with
¢ > 0, and discriminant 4(¢® — k2).

EXAMPLE 3. Electric circuits. ¥f we insert a capacitor in the electric circuit of Example 5
in Section 8.6, the differential equation which serves as.a model for this circuit is given by

LI'(¢} - RI(t) + El fl(t) dt = V(1},

where C is a positive constant called the capacitance. Differentiation of this equation gives
a second-order linear equation of the form

L") + RIH) + Ell(r) ey

If the impressed voltage ¥(¢} is constant, the right member is zero and the equation takes
the form

R 1
It =I'4+ —1)=0.
O+7 M+ = )
This is the same type of equation analyzed in Example 2 except that 2c is replaced by R/L,

and k* is replaced by 1/(LC). In this case, the coefficient ¢ is positive so the equation is
always stable. In other words, the current I(t) always tends to 0 as f— o0, The
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terminology of Example 2 is also used here. The current is said to be critically damped
when the discriminant is zero (CR? = 4L), overcritically damped when the discriminant
is positive (CR* > 4L), and undercritically damped when the discriminant is negative
(CR? < 4L).

EXAMPLE 4. Motion of a rocket with variable mass. A rocket is propelled by burning
fuel in 2 combustion chamber, allowing the products of combustion to be expelled backward.
Assume the rocket starts from rest and moves vertically upward along a straight line.
Designate the altitude of the rocket at time ¢ by r(¢), the mass of the rocket (including fuel)
by m(f), and the velocity of the exhaust matter, refative to the rocket, by c{z). In the absence
of external forces, the equation '

(8.35) )" (1) = m'({)ec(t)

is used as a mathematical model for discussing the motion. The left member, m(1}r"(2), is
the product of the mass of the rocket and its acceleration. The right member, m'(Ne(?), is
the accelerating force on the rocket caused by the thrust developed by the rocket engine.
In the examples to be considered here, m(¢) and e(i) are known or can be prescribed in
terms of r{¢) or its derivative r'(¢) (the velocity of the rocket). Equation (8.35) then becomes
a second-order differential equation for the position function r.

If external forces are aiso present, such as gravitational attraction, then, instead of
(8.35), we use the equation

(8.36) w6} = m'(Oe(t) + FQ)

where F{t) represents the sum of all external forces acting on the rocket at time 1.

Before we consider a specific example, we will give an argument which may serve to
motivate the Equation (8.35). For this purpose we consider first a rocket that fires its
exhaust matter intermittently, like bullets from a gun. Specifically, we consider a time
interval [t, # + #], where f is a small positive number; we assume that some exhaust
matter is expelled at time ¢, and that no further exhaust matter is expelled in the half-open
interval {r, t + A]. On the basis of this assumption, we obtain a formula whose limit, as
h—> 0, is Equation {8.35).

Just before the exhaust material is expelled at time r, the rocket has mass m{t) and
velocity o(t). At the end of the time interval [¢, £ + /], the rocket has mass m(t -- 4} and
velocity o{t + #). The mass of the expelled matter is m{t) — m(t + #), and its velocity
during the interval is {t) + e(f), since ¢(¢} is the velocity of the exhaust relative to the
rocket. Just before the exhaust material is expelled at time ¢, the rocket is a system with
momentum m(f)v(z). At time £ + A, this system consists of two parts, a rocket with
momentum m(z + At + #) and exhaust matter with momentum [m{r) — m{e <+ )is(1) +
¢(f)]. The law of conservation of momentum states that the momentum of the new system
must be equal to that of the old. Therefore, we have

m(tyo(e) = m(t -+ Wu(z + k) + [m(z) — m(t + Dlie(r) + ()],
from which we obtain

m(t + Wt + 8 — o()] = [t + k) — m(£)]e(t) .
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Dividing by k and letting 2 — 0, we find that
m(tye'(t) = m'(1)e(t) ,

which is equivalent to Equation (8.35).

Consider a special case in which the rocket starts from rest with an initiai weight of
w pounds (including b pounds of fuel) and moves vertically upward along a straight line,
Assume the fuel is consumed at a constant rate of & pounds pes second and that the products
of combustion are discharged directly backward with a constant speed of ¢ feet per second
relative to the rocket. Assume the only external force acting on the rocket is the earth’s
gravitational attraction. We want to know how high the rocket will travel before all its
fuel is consumed.

Since all the fuel is consumed when kr = b, we restrict ¢ to the interval 0 < ¢ < bjk.
The only external force acting on the rocket is —m(1)g, the velocity c(f) = —c, so Equation
(8.30) becomes

m(tyr (1) = —m' (e — mlf)g .

The weight of the rocket at time ¢ is w ~ ki, and its mass m(t) is {w — kt)/g; hence we have

m'() = —k/g and the foregoing equation becomes
. m'(1) ke
H=——"¢—g=—"——g.
T mi(t) 8 w— kt £

Integrating, and using the initial condition r'(0) = 0, we find

w o~ kf

() = —clog — gt.

Integrating again and using the initial condition r(0} = 0, we cbtain the relation

I’(t) — C(W "k— kr) log w— ki i

— —gt® + et
Zg

All the fuel is consumed when ¢ = b/k. At that instant the altitude is

2
r(§)=c(w~b)logw—b_lg§_ ch

®.37) k k w 2 i3 + K

This formula is valid if & < w. For some rockets, the weight of the carrier is negligible
compared to the weight of the fuel, and it is of interest to consider the limiting case b = w.
We cannet put b = w in (8.37) because of the presence of the term log (w — b)fw. However,
il we let b — w, the first term in (8.37) is an indeterminate form with limit ¢. Therefore,
when b —» w, the limiting value of the right member of (8.37) is

. b 1gw®  ew 1 ..
timr(2) = 1L 4 S grien
e \k 2 Tk 2t

where T = wjk is the time required for the entire weight w to be consumed,
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8.19 Exercises

In Exercises 1 through 3, a particle is assumed to be moving in simple harmonic metion, accord-
ing to the equation y = Csin (kx - «). The velocity of the particle is defined to be the derivative
¥'. The frequency of the motion is the reciprocal of the period. (Period = 2#/k; frequency = k/2n.)
The frequency represenss the number of cycles completed in unit time, provided & > 0.

1. Find the amplitude C if the frequency is 1/» and if the initial values of y and y* (when x = 0)
are 2 and 4, respectively.

2. Find the velocity when y is zero, given that the amplitude is 7 and the frequency is 10.

3. Show that the equation of motion can also be written as follows:

y =Acos(mx + 5).

Find equations that relate the constants A, m, §, and C, &, «.
4. Find the equation of motion given that y = 3 and 3’ = 0 when x = 0 and that the period is 4.
5. Find the amplitude of the motion if the period is 2= and the velocity is v, when y = .
6. A particle undergoes simple harmonic motion. Initially its displacement is 1, its velocity is 2

and its acceleration is —12. Compute its displacement and acceleration when the velocity js \/ 3.

7. For a certain positive number k, the differentiai equation of simple harmonic motion y” +
k*y = 0 has solutions of the form y = f{(x) with f(0) = f(3) = 0 and f(x) <G for all x in
the open interval 0 < x < 3. Compute k and find all solutions.

8. The current I{z) at time ¢ flowing_ in an electric circuit obeys the differential equation 1(¢) +
Iy = G(1), where G is a step function given by G(1) = 1if 0 < ¢ < 27, G{r) = Ofor all other ¢,
Determine the solution which satisfies the initial conditions [{0) = 0, I'(0) = 1.

9. The cucrent I(¢) at time ¢ flowing in an electric circuit obeys the differential equation

I + RIGH + I = sin wt

where R and w are positive constants. The solution can be expressed in the form I{f) =
F{#) + A sin (ot + «), where F({)— 0 as { — +c0, and 4 and « are constants depending on
Rand w, with A > 0. If there is a value of w which makes A as large as possible, then w/{(27)
is called a resonance frequency of the circuit.

(2) Find all resonance frequencies when R = 1.

(b} Find those values of R for which the circuit will have a resonance frequency.

10. A spaceship is returning to earth. Assume that the only external force acting on it is the
action of gravity, and that it falls along a straight line toward the center of the earth. The
effect of gravity is partly overcome by firing a rocket directly downward. The rocket fuel is
consumed 4t a constant rate of & pounds per second and the exhaust material has a constant
speed of ¢ feet per second relative to the rocket. Find a formula for the distance the spaceship
falls in time 7 if it starts from rest at time ¢ = 0 with an initial weight of w pounds.

il. A rocket of initial weight w pounds starts from rest in free space (no external forces) and
moves along a straight line, The fuel is consumed at a constant rate of & pounds per second
and the products of combustion are discharged directly backward at a constant speed of ¢

© feet per second relative to the rocket, Find the distance traveled at time ¢.

12. Solve Exercise 11 if the initial speed of the rocket is vy and if the products of combustion are

fired at such a speed that the discharged material remains at rest in space.

8.20 Remarks concerning nenlinear differential equations

Since second-order linear differential equations with constant coefficients occur in such
a wide variety of scientific problems, it is indeed fortunate that we have systematic methods
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for solving these equations. Many noulinear equations also arise naturally from both
physical and geometrical problems, but there is no comprehensive theory comparabie to
that for linear equations. In the introduction to this chapter we mentioned a classic “bag
of tricks” that has been developed for treating many special cases of nonlinear equations.
We conclude this chapter with a discussion of some of these tricks and some of the problems
they help to solve. We shall consider only first-order equations which can be solved for
the derivative ' and expressed in the form 5

(8.38) yo= .

We recall that a solution of (8.38) on an interval [ is any function, say y = ¥(x), which
is differentiable on I and satisfies the relation ¥'(x) = flx, ¥(x}] for all x in £. In the linear
case, we proved an existence-uniqueness theorem which tells us that one and only one
solution exists satisfying a prescribed initial condition. Moreover, we have an explicit
formula for determining this solution.

This is not typical of the general case. A nonlinear equation may have no solution
satisfying a given initial condition, or it may have more than one. For example, the equation
(y) — xy’ + y + 1 = 0 has no solution with y = 0 when x == 0, since this would require
that {y)* = —1 when x = 0. On the other hand, the equation y' = 3y?® has two distinct
solutions, ¥y(x) = 0 and F¥yx) = x5 satisfying the initial condition y =0 when x = 0.

Tlus, the study of nonlinear equations is more difficult because of the possible non-
existence or nonunigueness of solutions. Also, even when solutions exist, it may not be
possible to determine them explicitly in terms of familiar functions. Sometimes we can
eliminate the derivative y from the differential equation and arrive at a relation of the form

Flx, y})=0 .

satisfied by some, or perhaps all, solutions. If this equation can be solved for y in terms
of x, we get an explicit formula for the solution, More often than not, however, the
equation is too complicated to solve for y. For example, in a later section we shall study
the differential equation

I___y_x
y+x

¥
and we shall find that every solution necessarily satisfies the relation
(8.39) %log (x* + y% + arctan 21 C=0
X

for some constant C. It would be hopeless to try to solve this equation for y in terms of x.
In a case like this, we say that the relation (8.39) is an implicit formula for the solutions. Tt
is common practice to say that the differential equation has been “solved” or “integrated”
when we arrive at an implicit formula such as F{x, y) = 0 in which no derivatives of the
unknown function appear. Sometimes this formula reveals useful information about the
solutions. On the other hand, the reader should realize that such an implicit relation may
be fess helpful than the differential equation itself for studying properties of the solutions,
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In the next section we show how qualitative information about the solutions can often
be obtained directly from the differential equation without a knowledge of explicit or
implicit formulas for the solutions.

821 Integral curves and direction fields

Consider a differential equation of first order, say " = f{x, »), and suppose some of the
solutions satisfy an implicit relation of the form

(8.40) F(x,3,C) =0,

where C denotes a constant. If we introduce a rectangular coordinate system and plot ail
the points (x, ¥) whose coordinates satisfy (8.40) for a particular C, we obtain a curve called
an integral curve of the differential equation, Different values of C usually give different
integral curves, but all of them share a common geometric property. The differential
equation y' = f(x, y) relates the slape y* at each point (x, y) of the curve to the coordinates
xand y. As C takes on all its values, the collection of integral curves obtaided is called a
one-parameter family of curves.

For example, when the differential equation is ¥ =3, integration gives us y = 3x + C,
and the integral curves form a family of straight lines, all having slope 3. The arbitrary
constant C represents the y-intercept of these lines.

If the differential equation is y’ = x, integration yields y = 4x% 4+ C, and the integral
curves form a family of parabolas as shown in Figure 8.7. Again, the constant C tells us
where the various curves cross the y-axis. Figure 8.8 illustrates the family of exponential
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Ficure 8.7 Integral curves of the differ-
ential equation 3" = x.

Figure 8.8 Integrai curves of the differential
equation 3" = .
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curves, y == Ce®, which are integral curves of the differential equation y’ = y. Once niore,
C represents the y-intercept, In this case, C is also equal to the slope of the curve at the

point where it crosses the y-axis. . . _
A family of nonparallet straight lines is shown in Figure 8.9. These are integral curves

of the differential equation

__ﬂ_%ﬂf 7
(8.41) YEI T A\ax)

o X

Ficure 8.10 A solution of Equation
(8.41) that is mot a member of the
family in Equation {8.42).

Ticurs 8.9 Integral curves of the differential

. dy 1 fdyy
ec:j1.1al‘t10ny=xa—:1 E;c .

and a one-parameter family of solutions is given by
(8.42) y = Cx - %Cz .

This family is one which possesses an envelope, that is, a curve having the property that
at each of its points it is tangent to one of the members of the family.t The envelope here
is y = x* and its graph is indicated by the dotted curve in Figure 89. The env.e}ope ofa
family of integral curves is itself an integral curve because the slope and coordl_natf:s at a
point of the envelope are the same as those of one of the integral curves of the family. I'n
this example, it is easy to verify direcily that y = x* is & sojution of (8.4-1). Note that this
particular solution is not a member of the family ini (8.42). Further solut19ns, not mem?ers
of the family, may be obtained by piecing together members of the family with portions
of the envelope. An example is shown in Figure 8.10. The tangent line at 4 comes fl:Om
iaking C = —2 in (8.42) and the tangent at B comes from C = %. The resulting solution,
y = f(x), is given as follows:

~2x—1 i x< -1,
fly = (x if —-1<x<1%,
Ix—1 i x24%.

-+ And conversely, each member of the family is tangent to the envelope.
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This function has a derivative and satisfies the differential equation in (8.41) for every
real x. It is clear that an infinite number of similar examples could be constructed in the
same way. This example shows that it may not be easy to exhibit all possible solutions of
a differential equation.

Sometimes it is possible to find a first-order differential equation satisfied by all members
of a one-parameter family of curves. We illustrate with two examples,

EXAMPLE 1. Find a first-order differential equation satisfied by all circles with center
at the origin.

Solution. A circle with center at the origin and radius € satisfies the equation
x* 4y = C: As C varies over all positive numbers, we obtain every circle with center
at the origin. To find a first-order differential equation having these circles as integral
curves, we simply differentiate the Cartesian equation to obtain 2x + 2yy" = 0. Thus,
each circle satisfies the differential equation " = —x/fy.

EXAMPLE 2. Find a first-order differential equation for the family of all circles passing
through the origin and having their centers on the x-axis,

Solution. If the center of a circle is at (C, 0) and if it passes through the origin, the
theorem of Pythagoras tells us that each point (x, ¥} on the circle satisfies the Cartesian
equation (x - C)* + y* = C? which can be written as

(8.43) X* 4y —2Cx =0,

To find a differential equation having these circles as integral curves, we differentiate (8,43)
to obtain 2x + 2yy' — 2C =0, or

(8.44) x4y =C.

Since this equation contains C, it is satisfied only by that circle in (8.43) corresponding to
the same C. To obtain one differential equation satisfied by all the curves in (8.43), we
must eliminate C. We could differentiate (8.44) to obtain 1 + y* + ()2 =0. Thisis a
second-order differential equation satisfied by all the curves in (8.43). We can obtain a
first-order equation by eliminating C algebraically from (8.43) and (8.44). Substituting
x + yy’ for Cin (8.43), we obtain x* + 3? — 2x(x + y)"), a first-order equation which
can be solved for ¥’ and written as y" = (3 — x%){(2xy).

Figure 8.11 illustrates what is called a direction field of a differential equation. This is
simply a collection of short line segments drawn tangent to the various integral curves.
The particular example shown in Figure 8.11 is a direction field of the equation 3’ = y.

A direction field can be constructed without solving the differential equation. Choose
a point, say (g, b), and compute the number f{g, b) obtained by substituting in the righthand
side of the differential equation y" = f{x, y). If there is an integral curve through this point,
its slope there must be equal to f(a, &). Therefore, if we draw a short line segment through
(a, b) having this slope, it will be part of a direction field of the differential equation. By
drawing several of these line segments, we can get a fair idea of the general behavior of the
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FIGURE 8.11 A direction field for the differential equation y* = y.

integral curves. Sometimes such qualitative information about the sofution may be all
that is needed. Notice that different points (0, b) on the y-axis yield different integral
curves. This gives us a geometric reason for expecting an arbitrary constant io appear
when we integrate a first-order equation.

8.22 Exercises

In Exercises 1 through 12, find a first-order differential equation having the given family of
curves as integral curves.

. 2x +3y =0C 6. x* 4y +2Cy = 1.
2.y = Ce ™, 7.y = Clx — Lje*

3.2 -yt = Cl 8. pMx +2) = Clx — ).
4. xy =C. 9. y = Ccosx.

5. y* = Cx. 10. arctan y + arcsinx = C.
11. All circles through the points (1, 0) and (—1, 0).

12. All circles through the points (1, 1) and (-1, =1

Tn the construction of a direction field of a differential equation, sometimes the work may be
speeded considerably if we first locate those points at which the slope y’ has a constant value C.
For each C, these points lie on a curve called an isocline,

13. Plot the isoclines corresponding to the constant slopes 4, 1,3, and 2 for the differential equation
= x% + »%. With the aid of the isoclines, construct a direction field for the equation and iry
to determine the shape of the integral curve passing through the origin.

14. Show that the isoclines of the differential equation y* = x + y form a one-parameter family
of straight lines, Plot the isoclines corresponding to the constant slopes 0, +4, *+1, &3, 2.
With the aid of the isoclines, construct a direction field and sketch the integral curve passing
through the origin. One of the iniegral curves is also an isocline; find this curve.
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15. Plot a number of isoclines and construct a direction field for the equation

_ Ly (¥
-

If you draw the direction field carefully, you should be able to determing a one-parameter
family of solutions of this equation from the appearance of the direction fieid.

8.23 First-order separable equations

A first-order differential equation of the form y* = f(x, ) in which the right member
S (x,y)splitsinto a product of two factors, one depending on x alone and the other depending
on y alone, is said to be a separable equation. Examplesarey’ = x%,y" = 3,5’ = sin ylog x,
»' = x/tan y, etc. Thus each separable equation can be expressed in the form

Y= QR(y),

wllaere O and R are given functions, When R{y) # 0, we can divide by R(y) and rewrite
this differential equation in the form

AQ)y' = 0(),

where A()) = I/R(y). The next theorem tells us how to find an implicit formula satisfied
by every solution of such an equation.

THEOREM 8,10. Let y = Y(x) be any solution of the separable differential equation
(8.45) A(p)y = Q(x}
such that Y’ is continuous on an open interval I. Assume that both Q and the composite

Junction A = ¥ are continuous on I. Let G be any primitive of A, that is, any function such
that G' = A. Then the solution Y satisfies the implicit formula

(8.46) | 60) = [ 0w dx + ¢
Jor some constant C. Conversely, if y satisfies (8.46) then y is a solution of (8.45).
Proof. Since Yis a solution of (8.45), we must have
(8.47) A[Y()3Y'(x) = Q(x)
for each x in [. Since G’ = 4, this equation becomes
G'Y))Y'() = Qx) .

But, by the chain rule, the left member is the derivative of the composite function G= Y.




346 Introduction to differential equations

Therefore G » ¥ is a primitive of @, which means that

(8.49) GLY(T = [ oGy dx -+ €

for some constant €. This is the relation (8.46). Conversely, if ¥ = ¥(x) satisfies (8.46),
differentiation gives us (8.47), which shows that ¥ is a solution of the differential equation
(8.45).

Note: The implicit formula (8.46) can also be expressed in terms of 4. From (8.47)
we have

J'A{Y(x)] ¥'(x) dx =JQ(x) dx + C.

If we make the substitution y = Y{x}, dy = Y'(x) dx in the integral on the left, the
equation becomes

(8.49) f AQ) dy = j O dx + C.

Singe the indefinite integral | A(y) dy represents any primitive of A, Equation (8.49) is
an alternative way of writing (8.46). 7

In practice, formula (8.49) is obtained directly from (8.45) by a mechanical process. In
the differential equation (8.45) we write dy/dx for the derivative y’ and then treat dyldx as
a fraction to obtain the relation A(y) dy = @(x) dx. Now we simply attach integral signs
to botl sides of this equation and add the constant C to obtain (8.49). The justification for
this mechanical process is provided by Fheorem 8.10. This process is another example
illustrating the effectiveness of the Leibniz notation.

EXAMPLE. The nonlinear equation x)’ 4 y = p® is separable since it can be written in
the form
A
=10 x
provided that y(y — 1) 7 0 and x 5% 0. Now the two constant functions y = 0 and y = 1

are clearly solutions of x3” + y = ¥% The remaining solutions, if any exist, satisfy (8.50)
and, hence, by Theorem 8.10 they also satisfy

_dy_=fd_x+K
Wy —1 x

| Rl

(8.50)

>

for some constant K. Since the integrand on the left is 1/(p — 1) — 1/y, when we integrate,
we find that
logly — 1] —loglyf=logix| + K.

This gives us |(y — Dy} = | e or (y — 1)fy = Cx for some constant C. Solving for y,
we obtain the explicit formula

(8.51) y =
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Theorem 8.10 tefls us that for any choice of C this y is a solution; therefore, in this example
we have determined all solutions: the constant functions y = 0 and y = 1 and all the
functions defined by (8.51). Note that the choice C == 0 gives the constant solution y = 1.

824 Exercises

In Exercises 1 through 12, assume solutions exist and find an implicit formula satisfied by the
solutions.

Loy = a2 T {1 —xHYy +1+2=0.

2, tan x cos y = —) tan y. g ap(l + X3y - +yH=0

L H+Ly +2 =0 9. (& — 4y =7.

4.9 = — Dy — 2. 10, xyp =1 + 22 + % 4 x%Hh

5, y\/l_—:;zy’ = X, .y =& Hsinx.

6. (x — 1)y = xy. 12, xdx + pdy = xp(x dy — y dx).

In Exercises 13 through 16, find functions f; contingous on the whole real axis, which satisfy the
conditions given., When it is easy to enumerate ail of them, do so; in any case, find as many as
you can.

13, () = 2 -+ [T F() de.

4, fEf = =5% [fO=1

15. fx) -+ 2xe”® =0, f(0) =0,

16. f3x) + (0P = 1. Note: f(x) = —1 is one solution.

17. A nonnegative function f; continuous on the whole real axis, has the property that its ordinate
set over an arbitrary interval has an area proportional to the length of the interval. Find £

18. Solve Exercise 17 if the area is proportional o the difference of the function values at the end-
points of the interval.

19. Solve Exercise 1§ when “difference” is replaced by “sum.”

20. Solve Exercise 18 when “difference™ is replaced by “product.”

8.25 Homogeneous first-order equations

We consider now a special kind of first-order equation,

{8.52) Y=,
in which the right-hand side has a special property known as homogeneity. This means that
(8.53) JOx, tp) = f(x, 1)

for all x, y, and all 7 52 0, In other words, replacement of x by #x and y by fy bas no effect
on the value of f(x, ). Equations of the form (8.52) which have this property are called
homogeneous (sometimes called homogeneous of degree zero). Examples are the following:

2 2
X sin Xty
y X =y

s ¥y =logx —logy.

. —x . XY .
y=1 y-—-(——y,

= : Yy =
y+x xy

If we use (8.53) with ¢ = 1/x, the differential equation in (8.52) becomes

(8.54) y’ =f(1, X) .

X
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The appearance of the quotient y/x on the right suggesis that we introduce a new unknown
function v where v = y/x. Then y == vx, } = v’x + v, and this substitution transforms
(8.54) into

x-@=f(l,v)—v.

v'x 4+ v=F(1,0) or
dx

This last equation is a first-order separable equation for 0. 'We may use Theorem 8.10 to
obtain an implicit formula for v and then replace v by y/x to obtain an implicit formula

for y. ‘
EXaMeLE. Solve the differential equation ' = (y — )y + x).

Solution. 'We rewrite the equation as follows:

f=-yl’x”1
yix+1°

The substitution v = yfx transforms this into

dv v—1 v ___1+v“
dx v+ 1§ o1

Applying Theorem 8.10, we get

v 1 dx
d+f dv=—} Z 4.
fl-{-vzv 1+Uzv x+

Integration yields
Llog(l + v + arctanv = —log|x| + C.

Replacing # by y/x, we have
+log (x* 4+ y*) — log x* + arctan £ = —log |xi + C,
x
and since log x* = 2 log |x|, this simplifies to

i log (x* + %) + arctan i =C.

There are some interesting geometric properties possessed by the solutions of a homo-
geneous equation y° = f{(x, y). First of all, it is easy to show that straight lines through the
origin are isoclines of the equation. We recall that an isocline of ' = f(x, y) is a curve
along which the slope ' is constant. This property is illustrated in Figure 8.12 which
shows a direction field of the differential equation y’ == —2y/x. The isocline corresponding
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to slope ¢ has the equation —2p/x = ¢, or p == —{cx and is therefore a line of slope —3c
through the origin. To prove the property in general, consider a line of slope m through
the origin. Then y = mx for all (x, y) on this line; in particular, the point (1, m) is on the
line. Suppose now, for the sake of simplicity, that there is an integral curve through each
point of the line y = mx. The slope of the integral curve through a point (a, b} on this
line is f(a, b) == f(a, ma). If a £ 0, we may use the homogeneity property in (8.53) to
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FiGUre B.12 A direction field for the differential equation y° = — 2y/x. The isoclines

are straight lines through the erigin.

write f(a, ma) = f(1, m). In other words, if (g, b) # (0, 0), the integral curve through
(a, b) has the same slope’ as the integral curve through (1, m). Therefore the line y = mx
is an isocline, as asserted. (fi can also be shown that these are the only isoclines of a
homogeneous equation.) :

This property of the isoclines suggests a property of the integral curves known as
invarianee under similarity transformations. We recall that a similarity transformation
carries a set S into a new set kS obtained by multiplying the coordinates of each point
of § by a constant factor k¥ > 0. Every line through the origin remains fixed under a
similarity transformation. Thercfore, the iscclines of a homogeneous eguation do not
change under a similarity transformation; hence the appearance of the direction field
does not chanpe either. This suggests that similarity transformations carry integral curves
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~

into integral curves. To prove this analytically, et us assume that S is an integral curve
described by an explicit formula of the form

(8.55) y = F(x).
To say that § is an integral curve of y" = f(x, y) means that we have
(8.56} Fi(x) = flx, F(x))

for all x under consideration. Now choose any point (x, ¥} on kS. Then the point (x/k, y/k)
lies on § and hence its coordinates satisfy (8.53), so we have y/k = F(xfk) or y = kF(x[k).
In other words, the curve &S is described by the equation y = G(x), where G(x) = kF(x/k).
Note that the derivative of G is given by

cw=sefg) 1o

To prove that kS is an integral curve of y" = f(x, y) it will suffice to show that G'(x) =
fix, G(x)) or, what is the same thing, that

(8.57) F! (i) = f(x, kF(;C—C)) .

But if we replace x by xfk in Equation (8.56) and then use the homogeneity property with

t = k, we obtain )
=15 ) -slooe)

and this proves (8.57). In other words, we have shown that kS is an integral curve whenever
§is. A simple example in which this geometric property is quite obvious is the homogeneous
equation y’ = —xfy whose integral curves form a one-parameter family of concentric
circles given by the equation x? + y* == C.

It can also be shown that if the integral curves of a first-order equation )" = f(x, y) are
invariant under similarity transformations, then the differential equation is necessarily
homogeneous.

- 8.26 Exercises

1. Show that the substitution ¥ = x/v transforms a homogeneous equation 3 = f{x, ¥) into a
first-order equation for v which is separable. Sometimes this substitution leads to integrals
that are easier to evaluate than those obtained by the substitution y = xv discussed in the text.

Inteprate the differential equations in Exercises 2 through 11,

—x %% o 257
2y = 4, y = ————.
¥ ¥ Y xy
3.y =1 +£, 5. (22 - 2Ty 4 3xy = 0.
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. YR+ xy +57)

6. xy =3 — AV + A = AT

R =y - VA Ay e ok
Syt 5 I S

T 2%y +xy + 2y =0. 10.y=;+sm;.

8 98 (xR - xy + Py =0, 1L x(y +4x) + y(x - 4y) = 0.

8.27 Some geometrical and physical problems leading to first-order equations

We discuss next some examples of geometrical and physical problems that lead to
first-order differentiai equations that are cither separable or homogenecus.

Orthogonal trajectories. Two curves are said to intersect orthogonally at a point if their
tangent lines are perpendicular at that point. A curve which intersects every member of a
family of curves orthogonally is called an orthogonal trajectory for the family. Figure 8,13
shows some examples. Problems involving orthogonal trajectories are of importance in
both pure and applied mathematics. For example, in the theory of fluid flow, two orthogonal
families of curves are called the equipotential lines and the stream lines, respectively. In the
theory of heat, they are known as isethermal fines and lines of flow.

Suppose a given family of curves satisfies a first-order differential equation, say

(8.5%) Y =15

The number f(x, y} is the siope of an integral curve passing through (x, ). The siope of
each orthogonal trajectory through this point is the negative reciprocal —1/f(x, y), so the
orthogonal trajectories satisfy the differential equation

1
[0

If (8.58) is separable, then (8.59) is also scparable. If (8.58) is homogeneous, then (8.59) is
also homogeneous.

(8.59) y o= —

EXAMPLE 1. Find the orthogonal trajectories of the family of all circles through the origin
with their centers on the x-axis.

Solution. In Example 2 of Section 8.21 we found that this family is given by the
Cartesian equation x* 4 y* — 2Cx =0 and that it satisfies the differential equation
3 = (32 — x®)/(2xp). Replacing the right member by its negative reciprocal, we find that
the orthogonal trajectories satisfy the differential equation ‘

This homogeneous equation may be integrated by the substitution y == vx, and it leads to
the family of integral curves '

XHyr =20y =0.
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This is a family of circles passing through the origin and having their centers on the y-axis.
Examples are shown in Figure 8.13.

Pursuit problems. A point Q is constrained to move along a prescribed plane curve C, .
Another point P in the same plane “pursues” the point . That is, P moves in such a
manner that its direction of motion is always toward Q. The point P thereby traces out
another curve ¢, called a curve of pursuit. An example is shown in Figure 8.14 where €y is

Figure 8.14 The tractrix as
a curve of pursuit. The dis-

Figure 8.13  Orthogonal circles.

tance from P to Q is constant.

the y-axis. In a typical problem of pursuit we seck to determine the curve C, when the
curve C; is known and some additicnal piece of information is given concerning P and @,
for example, a relation between their positions or their velocities.

When we say that the direction of motion of P is always toward (J, we mean that the
tangent line of C, through P passes through ¢. Therefore, if we denote by (x, y) the
rectangular coordinates of P at a given instant, and by (X, Y} these of @ at the same
instant, we must have :

Y—y
X —x

(8.60) ¥y =

The additional piece of information usually enables us fo consider X and ¥ as known
functiens of x and p, in which case Equation (8.60) becomes a first-order differential
equation for y. Now we consider a specific example in which this equation is separable.
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EXAMPLE 2. A point ¢ moves on a straight line C;, and a point P pursues { insuch a
way that the distance from P to @ has a constant value &£ > 0. If P is initially not on C, ,
find the curve of pursuit.

Solution. We take C,; to be the y-axis and place P initially at the point (&, 0). Since
the distance from P to @ is k, we must have (X — x)* + (Y — p)? =k* But ¥ = (O on
C,, 50 we have ¥ — y = V'k* — x?, and the differential equation (8.60) becomes

'\,sz — xz

—X

!

y=

Integrating this equation with the help of the substitution x == k cos ¢ and vsing the fact
that y = 0 when x = k, we obtain the relation :

AT
y=k10gk—+—;k——3c—-— VR - %P

The curve of pursuit in this example is called a #ractrix; it is shown ic Figure 8.14.

Flow of fluid through an orifice. Suppose we are given a tank (not necessarily cylindrical}
containing a fluid. The fluid fiows from the tank through a sharp-edged orifice. If there
were no friction (and hence no loss of energy) the speed of the jet would be equal to v/2gy
feet per second, where y denotes the height (in feet) of the surface above the orifice.t (See
Figure 8.15.) If 4, denotes the area (in square feet) of the orifice, then AU\/E—‘g; represents
the number of cubic feet per second of fluid flowing from the orifice. Because of friction,
the jet stream contracts somewhat and the actual rate of discharge is more nearly c4,V/2gy,
where ¢ is an experimentally determined number called the discharge coefficient. For
ordinary sharp-edged orifices, the approximate value of ¢ is 0.60. Using this and taking
g == 32, we find that the speed of the jet is 4,84y feet per second, and thercfore the rate of
discharge of volume is 4.8AU\/; cubic feet per second.

Let F(y) denote the volume of the fluid in the tank when the height of the fluid is y. T
the cross-sectional area of the tank at the height « is A{x), then we have V() = [V A{u) du,
from which we obtain dV{dy = A(y). The argument in the foregoing paragraph tells us
that the rate of change of volume with respect to time is dF/dt = —4.84,Vy cubic feet per
second, the minus sign coming in because the volume is decreasing. By the chain rule we
have

Combining this with the equation dV/dt = —4.845V'y, we obtain the differential equation

d
AT = —4.840/F .

t If a particle of mass m fe1‘lls freely through a distance y and reaches a speed v, its kinetic energy jmp*
must be equal to the potential energy mgy (the work done in lifting it 2p a distance y). Solving for v, we

get v = v/ 2¢y.
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This separable differential equatiori is used as the mathematical model for problems
concerning fluid flow through an orifice. The height y of the surface is related to the time
t by an equation of the form

(8.61) f%}g dy = —4.3A0fdr +C.

Area = A(Y)

Fiqure 8.15 Flow of fluid through an orifice.

EXAMELE 3. Consider a specific case in which the cross-sectiomal area of the tank is
constant, say A(y) = 4 for all y, and suppose the level of the fluid is lowered from 10 fect
to 9 feet in 10 minutes (600 seconds). These data can be combined with Equation (8.61)

to give us

k] ane
— f!-y: =k di,
w0 4/y 0
where k = 4.84,/4. Using this, we can determine & and we find that
VIO—=¥0 _ ook or k= Y10—3
H ‘ 300

Now we can compute the time required for the level to fail from one given value to any
other. For example, if at time ¢; the level is 7 feet and at time £, it is 1 foot (1, t, measured
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in minutes, say), then we must have

1 80i
—-J d—y_ = kj " dt ,
7 4/ 6021

which yields
2VT7 = 1) V71 10(VT7 — DVI0 + 3)
ty — t; = = 10 == = = (10)(1.643)(6.162
P 60k V10 — 3 10— 9 (10)(1.643)8.162)
= 101.3 min.

8.28 Miscellanecus review exercises

In each of Exercises I through 10 find the orthogonal trajectories of the given family of curves.

1. 2x +3y=0C, 5. x%y =C.

2. xp =C. 6. y = Ce 2=,

LAt +p+ 20y =1 7.2 =y =C.

4. y* = Cx. 8.y = Ccosx,

9. All circles through the poiats (1, 0) and (—1, 0).
10. All circles through the points (1, 1) and (-1, —1).
11, A point @ moves upward along the positive y-axis. A point P, iritially at (1, 0), pursues ¢

in such a way that its distance from the y-axis is 4 the distance of ( from the origin. Find a
Cartesian equation for the path of pursuit.

12, Solve Exercise 11 when the fraction 4 is replaced by an arbitrary positive number k.

13. A curve with Cartesian equation y = f(x) passes through the origin, Lines drawn parallel
to the coordinate axes through an arbitrary point of the curve form a rectangle with two sides
on the axes. The curve divides every such rectangle into two regions 4 and B, one of which

. has an area equal to n times the other. Find the function f.

14. Solve Exercise 13 if the two regions 4 and B have the property that, when rotated about the
x-axis, they sweep out solids one of which has a volume # times that of the other.

15. The graph of a nonnegative differentiable function f passes through the origin and through
the point (1, 2{=). If, for every x > 0, the ordinate set of f above the interval [0, x] SWeeps
out a sclid of volume x*f(x) when rotated about the x-axjs, find the function f.

16. A nonnegative differentiable function fis defined on the closed interval [0, 1] with f(1) = 0.
For each a, 0 < a < 1, the line x = g cuts the ordinate set of finto two regions having areas
A and B, respectively, A being the area of the lefomost region. If 4 — B = 2f(a) + 3a + b,
where b is a constant independent of g, find the function f and the constant b,

17. The graph of a function f passes through the two points £, = (0, 1) and P; = (1, 0). For every

point £ = (x, y) on the graph, the curve lies above the chord F,P, and the area A(x) of the
region between the curve and the chord PP is equal to x%. Determine the function £,

18. A tank with vertical sides has a square cross-section of area 4 square feet. Water is leaving the
tank through an crifice of area 5/3 square inches. If the water level is initially 2 feet above
the orifice, find the time required for the level to drop 1 foot.

19, Refer to the preceding problem. If water also flows into the tank at the rate of 100 cubic inches
per second, show that the water level approaches the value (25/24)* feet above the orifice,
regardiess of the initial water level.

20. A tank has the shape of a right circular cone with its vertex up. Find the time required to
empty a liquid from the tank through an orifice in its base. Express your result in terms of the
dimensions of the cone and the area A, of the orifice.
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21,

22,

23

24.

25,

26.

27.

28.

29.

The equation xp” — 3’ + (1 — x)y = 0 possesses a solution of the form y = ™%, where m
is constant. Determine this solution explicitly. .

Solve the differential equation (x + y% + 6xp% = 0 by making a suitable change of variable
which converts it into a linear equation. o

Solve the differential equation (1 + %))’ 4+ y = 0 by introducing a change of variable of
the form y == we™®, where m is constant and « Is a new uhknown function.

(a) Given a function f which satisfies the relations

i
2f"(x) =f(;) if x>0, f(y=2,
let y = f(x) and show that y satisfies a differential equation of the form
x%y” -+ axy’ 4 by = 0,

where g and b are constants. Determine o and 5.
(b} Find a solution of the form f{x) = Cx".

(a) Let u be a nonzero solution of the second-order eqﬁation
¥ R Py + Qxy =0.
Show that the substitution y = uv converts the equation
Y + PRy + 0(x)y = RO

into a first-order linear equation for v",
(b} Obtain a nonzero solution of the equation y” — 4p" 4+ x%(y" — 4y} = 0 by ingpection
and use the methed of part {a) to find a selution of

Yoy My - 4y) = 2xe

such that y = 0 and y" =4 when x = 0.

Scientists at the Ajax Atomics Works isolated one gram of a new radioactive element cailed
Deteriorum. It was found to decay at a rate proportional to the square of the amount present.
After one year,  gram remained.

(a) Set up and solve the differential equation for the mass of Deteriorum remaining at time .
(b) Evaluate the decay constant in units of gm= yr~2,

In the preceding problem, suppose the word square were replaced by square roof, the other
data remaining the same. Show that in this case the substance waquld decay entirely within
a finite time, and find this time.

At the beginning of the Gold Rush, the population of Coyote Gulch, Arizona was 365, From
thert on, the population would have grown by a factor of e each year, except for the high rate
of “accidental” death, amounting te one victim per day among every 100 citizens. By solving
an appropriate differential equation determine, as functions of time, (a} the actual population of
Coyote Gulch # years from the day the Gold Rush began, and (b) the cumulative number of
fatalities, .

With what speed should a rocket be fired upward so that it never returns to earth? (Neglect
all forces except the earth’s gravitational attraction.)
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30. Let y = f(x) be that solution of the differential equation

31.

L _ Y 4x
Y Tigts

which satisfies the initial condition f(0) = 0. (Do not attempt to solve this differential equation.)
(2) The differential equation shows that f(0) = 0. Discuss whether f has a relative maxirum
or minimum or neither at 0.

(b) Notice that f*(x) = 0 for each x > 0 and that f'(x) > £ for each x > 42 Exhibit
two positive numbers @ and 5 such that f(x) > ax — b for cach x > 12,

{c) Show that x{y* — 0 as x —> --eo. Give full details of your reasoning.

(d) Show that y/x tends to a finite limit as ¥ — +v0 and determine this limit.

Given a function f which satisfies the differential equation

) + AP =1 —e®

for all real x. (Do not atiempt to solve this differential equation.)

{a) If fhas an extremum at a point ¢ # 0, show that this extremum is a mininum.

(b} If f has an extremum at 0, is it a maximum or a minimum? Justify youtr conclusion,
(@) If f(0) =f0) = 0, find the smallesr constant 4 such that f(x) < Ax®forall x > 0.




