1 Maximal Toral Subalgebras

A toral subalgebra of a Lie algebra \mathfrak{g} is any subalgebra consisting entirely of abstractly semisimple elements.

Lemma 1.1 If $\mathfrak{t} \subset \mathfrak{g}$ is any toral subalgebra, then \mathfrak{t} is abelian.

Pf. Assume $x \in \mathfrak{t}$ has $(\text{ad}x)|_{\mathfrak{t}} \neq 0$. Because x is semisimple, it is ad-simisimple, so there is some $y \in \mathfrak{t}$ with $(\text{ad}x)(y) = ay$. Note that

$$0 = (\text{ad}y)(\text{ad}x)(y) = -(\text{ad}y)^2x. \quad (1)$$

However, y is also semisimple, so we can write

$$x = x_1 + \ldots + x_n \quad (2)$$

where $(\text{ad}y)(x_i) = \lambda_i x_i$. Therefore

$$0 = (\text{ad}y)^2x = \sum_{i=1}^{n} \lambda_i^2 x_i \quad (3)$$

so that each $\lambda_i = 0$. However this contradicts

$$0 \neq ay = (\text{ad}x)y = -(\text{ad}y)x = \sum_{i=1}^{n} \lambda_i x_i. \quad (4)$$

□

If \mathfrak{g} is a semisimple Lie algebra, then any maximal toral subalgebra \mathfrak{h} is called a *Cartan subalgebra* or CSA for short. Caution: in the non-semisimple case, this is not the proper use of the term CSA.
Since \(\mathfrak{h} \) is a commuting subalgebra, the action of \(\text{ad}_\mathfrak{g} \mathfrak{h} \) is simultaneously diagonalizable. This means that \(\mathfrak{g} \) has a complete root-space decomposition: there are finitely many linear functionals \(\alpha \in \mathfrak{h}^* \cong \Lambda \), \(\alpha : \mathfrak{h} \to \mathbb{F} \) so that

\[
\mathfrak{g} = \bigoplus_{\alpha \in \Lambda} \mathfrak{g}_\alpha
\]

where

\[
\mathfrak{g}_\alpha = \{ x \in \mathfrak{g} \mid h.x = \alpha(h)x \text{ for all } h \in \mathfrak{h} \}
\]

is the (non-trivial) weight-space associated to the functional \(\alpha \). Note that \(\mathfrak{g}_0 \) is \(C_\mathfrak{g}(\mathfrak{h}) \), the centralizer of \(\mathfrak{h} \) in \(\mathfrak{g} \).

Proposition 1.2 Assume \(\mathfrak{g} \) is a semisimple Lie algebra. Then

a) Given \(\alpha, \beta \in \mathfrak{h}^* \), we have \([\mathfrak{g}_\alpha, \mathfrak{g}_\beta] \in \mathfrak{g}_{\alpha+\beta} \).

b) If \(x \in \mathfrak{g}_\alpha \) then \(\text{ad} x \) is nilpotent.

c) If \(\beta \neq -\alpha \) then \(L_\alpha \) is perpendicular to \(L_\beta \) under the Killing form.

d) The restriction of \(\text{ad}_\mathfrak{g} \mathfrak{h} \) to \(\mathfrak{g}_0 \) is non-degenerate.

\[\text{Pf.} \] Let \(x_\alpha \in \mathfrak{g}_\alpha \), \(x_\beta \in \mathfrak{g}_\beta \). For (a), we have

\[
[h, [x_\alpha, x_\beta]] = [[h, x_\alpha], x_\beta] + [x_\alpha, [h, x_\beta]]
\]
\[
= \alpha(h)[x_\alpha, x_\beta] + \beta(h)[x_\alpha, x_\beta] = (\alpha + \beta)(h)[x_\alpha, x_\beta].
\]

For (b), note that \((\text{ad} x_\alpha)^n : \mathfrak{g}_\beta \to \mathfrak{g}_{\beta+n\alpha} \). Since the number of weight spaces is finite, there is some \(n \) so \((\text{ad} x_\alpha)^n = 0 \). For (c), by associativity of \(\kappa \) we have

\[
0 = \kappa([h, x_\alpha], x_\beta) + \kappa(x_\alpha, [h, x_\beta]) = (\alpha(h) + \beta(h)) \kappa(x_\alpha, x_\beta).
\]

For (d), we know that \(\text{ad}_\mathfrak{g} \mathfrak{h} : \mathfrak{g} \to \mathfrak{g} \) is non-degenerate, but also that \(\text{ad}_\mathfrak{g} \mathfrak{h}|_{\mathfrak{g}_\alpha} = 0 \) unless \(\alpha = 0 \). Thus \(\text{ad}_\mathfrak{g} \mathfrak{h} \) must be non-degenerate on \(\mathfrak{h} \). \[\square \]

Proposition 1.3 We have \(\mathfrak{g}_0 = \mathfrak{h} \).

\[\text{Pf.} \] Write \(\mathcal{C} = C_\mathfrak{g}(\mathfrak{h}) = \mathfrak{g}_0 \).

\text{Step I.} \(\mathcal{C} \) contains the abstract semisimple and nilpotent parts of all its elements. Since \(x \in \mathcal{C} \) has \(\text{ad} x : \mathfrak{h} \to 0 \) and \((\text{ad} x)_s = \text{ad} x_s, (\text{ad} x)_n = \text{ad} x_n \) are given as polynomials in \(\text{ad} x \) without constant term, so also \((\text{ad} x)_s, (\text{ad} x)_n : \mathfrak{h} \to 0 \) meaning that \(x_s, x_n \in \mathcal{C} \).

\text{Step II.} All semisimple elements of \(\mathcal{C} \) lie in \(\mathfrak{h} \). If \(x \) is semisimple and \(x : \mathfrak{h} \to 0 \) then \(\mathfrak{h} + \mathbb{F}x \) is both an algebra and is toral.
Step III. The restriction of \(\kappa \) to \(\mathfrak{h} \) is non-degenerate. If \(x \in C \) is nilpotent, then because \(x \) commutes with \(\mathfrak{h} \) we have \(\kappa(x, \mathfrak{h}) = 0 \). But \(C = \mathfrak{h} + \text{nilpotents} \) so if \(h \in \mathfrak{h} \), its dual must be in \(\mathfrak{h} \).

Step IV. \(C \) is nilpotent. Since \(C = \mathfrak{h} + \text{nilpotents} \) and \(C \) commutes with \(\mathfrak{h} \), any element of \(C \) is a sum of something in \(\mathfrak{h} \) with a nilpotent, and since everything commutes, and arbitrary element is nilpotent. Thus \(C \), being ad-nilpotent, is nilpotent.

Step V. We have \(\mathfrak{h} \cap [C, C] = \{0\} \). We have \(\kappa([h, [C, C]]) = \kappa([C, h], C) = 0 \). Thus \([C, C] \) intersects \(\mathfrak{h} \) trivially.

Step VI. \(C \) is abelian. If \(D = [C, C] \) is non-trivial, then any \(x \in D \) is nilpotent. Also \(D \cap Z(C) \) is nontrivial, so we can assume \(x \in D \cap Z(C) \). But then \(x_n \in Z(C) \) is non-zero, so \(\kappa(x_n, C) = 0 \), which is impossible because \(\kappa \) restricted to \(C \) is nondegenerate.

Step VII. If \(x \in C \setminus H \) then its nilpotent part \(x_n \in C \) commutes with \(C \), and so \(\kappa(x_n, C) = 0 \), which is impossible because \(\kappa|_C \) is nondegenerate.

We can now identify \(\mathfrak{h} \) with \(\mathfrak{h}^\ast \) via \(\kappa_g \). Given any linear functional \(\alpha \in \mathfrak{h}^\ast \), define \(t_\alpha \in \mathfrak{h} \) by
\[
\alpha(h) = \kappa(t_\alpha, h)
\]
for all \(h \in \mathfrak{h} \).

Proposition 1.4 Assume \(\mathfrak{g} \) is a finite dimensional simple Lie algebra over an algebraically closed field of characteristic 0. Let \(\Phi \) be the set of roots of the adjoint action of \(\mathfrak{h} \) on \(\mathfrak{g} \). Then

a) \(\Phi \) spans \(\mathfrak{h}^\ast \).

b) If \(\alpha \in \Phi \) then \(-\alpha \in \Phi \).

c) If \(\alpha \in \Phi \) and \(x \in \mathfrak{g}_\alpha, y \in \mathfrak{g}_{-\alpha} \), then \([x, y] = \kappa(x, y) t_\alpha \) (recall \(t_\alpha \) is the \(\kappa \)-dual of \(\alpha \)).

d) If \(\alpha \in \Phi \) then \([\mathfrak{g}_\alpha, \mathfrak{g}_{-\alpha}] \leq \mathfrak{h} \) is 1-dimensional.

e) If \(\alpha \in \Phi \) then \(\alpha(t_\alpha) = \kappa(t_\alpha, t_\alpha) \neq 0 \).

f) If \(\alpha \in \Phi \) and \(x_\alpha \in \mathfrak{g}_\alpha \), there is some \(y_\alpha \in \mathfrak{g}_{-\alpha} \) so that setting \(h_\alpha = [x_\alpha, y_\alpha] \) we have \(\text{span}\{x_\alpha, y_\alpha, h_\alpha\} \approx \mathfrak{sl}(2, \mathbb{F}) \).

g) Given \(x_\alpha \in \mathfrak{g}_\alpha \), the choice of \(y_\alpha \) in (f) leads to \(h_\alpha = \frac{2y_\alpha}{\kappa(t_\alpha, t_\alpha)} \). In addition \(h_\alpha = -h_{-\alpha} \).

Pf. (a). If not, there is some \(h \in \mathfrak{h} \) so that \(\alpha(h) = 0 \) for all \(\alpha \in \Phi \). But then \([h, \mathfrak{g}_\alpha] = 0 \) for all \(\alpha \in \Phi \), so \(h \in Z(\mathfrak{g}) \), an impossibility.

(b). If \(\alpha \in \Phi \) but \(-\alpha \notin \Phi \) then \([\mathfrak{g}_\alpha, \mathfrak{g}] = \{0\} \), meaning \(\mathfrak{g}_\alpha \in Z(\mathfrak{g}) \), again an impossibility.
(c). Given \(h \in \mathfrak{h} \), \(x \in \mathfrak{g}_\alpha \), \(y \in \mathfrak{g}_{-\alpha} \), the associativity of \(\kappa \) implies

\[
\kappa(h, [x, y]) = \kappa([h, x], y) \\
= \alpha(h) \kappa(x, y) \\
= \kappa(t_\alpha, h) \kappa(x, y) \\
= \kappa(t_\alpha \kappa(x, y), h)
\]

but then \(([x, y] - \kappa(x, y)t_\alpha) \in \mathfrak{h} \) and \(h \perp ([x, y] - \kappa(x, y)t_\alpha) \) for all \(h \in \mathfrak{h} \), forcing \([x, y] = \kappa(x, y)t_\alpha \).

(d). Follows directly from (c).

(e). Assume \(\alpha(t_\alpha) = \kappa(t_\alpha, t_\alpha) = 0 \). Then \(\mathfrak{s} = \text{span}_\mathbb{C} \{x, y, t_\alpha\} \) is a nilpotent Lie algebra. Consider its \textit{ad}-representation on \(\mathfrak{g} \).

(f) and (g). Given any \(x_\alpha \in L_\alpha \), pick \(y_\alpha \in L_{-\alpha} \) so that \(\kappa(x_\alpha, y_\alpha) = \frac{2\alpha}{\kappa(t_\alpha, t_\alpha)} \triangleq h_\alpha \). Then \([h_\alpha, x_\alpha] = \alpha(h_\alpha)x_\alpha = 2x_\alpha \) and \([h_\alpha, y_\alpha] = -\alpha(h_\alpha)y_\alpha = -2y_\alpha \), so we have our copy of \(\mathfrak{sl}(2, \mathbb{C}) \). □