Lecture 2 - Fundamental definitions, and Engel’s Theorem

September 11, 2012

1 Basic Definitions

A representation of a Lie algebra L is a homomorphism φ of L into the Lie algebra $\mathfrak{gl}(V)$ for some vector space V over F. Every Lie algebra has at least one representation, the adjoint representation $ad : L \to End(V)$.

A subalgebra K of L is a subspace that is closed under the bracket.

An ideal I of K is a subalgebra so that $x \in L$, $y \in I$ implies $[x,y] \in I$.

If I and J are ideals, so is $I + J$, defined to be the set of all elements $c_1x + c_2y$ where $c_1, c_2 \in F$, $x \in I$, $y \in J$.

If I and J are ideals, so is $[I,J]$, which is defined to be the vector space spanned by elements of the form $[x,y]$ where $x \in J$ and $y \in J$.

Two ideals possessed by any Lie algebra are the derived algebra $[L,L]$, and the center $Z(L)$ or $C(L)$, defined to be the set of elements $x \in L$ so that $[x,y] = 0$ for all $y \in L$. Either of these algebras may be trivial or may equal L itself.

Proposition 1.1 (Humphreys 2.2) Assuming $I, J \subset L$ are ideals. Then $(I + J)/J$ is canonically isomorphic to $I/(I \cap J)$, and if $I \subset J$ then K/J is canonically isomorphic to $(K/I)/(J/I)$

If $K \subseteq L$ is a subalgebra, we define the normalizer of K in L

$$N_L(K) = \{ x \in L \mid [x,K] \in K \}.$$ \hfill (1)

Using the Jacobi identity, $N_L(K)$ can be seen to be a subalgebra of L. It is the largest subsalgebra that contains K as an ideal. If $N_L(K) = L$ then K is an ideal. If $N_L(K) = K$ then K is said to be self-normalizing.
If $K \subseteq L$ is a subalgebra, we define the \textit{centralizer} of K in L to be

$$C_L(K) = \{ x \in L \mid [x,K] = 0 \}.$$ \hfill (2)

Note that K is usually not contained in $C_L(K)$. Also, $C_L(L) = C(L)$.

A \textit{derivation} of a Lie algebra L is a linear map $\delta : L \to L$ so that $\delta [x,y] = [\delta x, y] + [x, \delta y]$. The vector space of derivations $\text{Der}(L)$ is in fact a Lie algebra; it is easily checked that if $\delta, \delta' \in \text{Der}(L)$ then $[\delta, \delta'] \triangleq \delta \delta' - \delta' \delta$ is also a derivation. By the Jacobi identity, the adjoint map can be thought of as $ad : L \to \text{Der}(L)$.

If $[L,L] = \{0\}$ then L is called \textit{abelian}. If L has no nontrivial proper ideals, then L is called \textit{simple}.

If L, N are Lie algebras, a \textit{homomorphism} $\varphi : L \to N$ is a linear map that commutes with the brackets; that is

$$\varphi([x,y]) = [\varphi(x), \varphi(y)]$$ \hfill (3)

whenever $x, y \in L$. The \textit{Kernel} of φ, denote $\text{Ker}(\varphi)$ is the vector space kernel of the map φ. It is easily checked that $\text{Ker}(\varphi)$ is an ideal.

A homomorphism $\varphi : L \to N$ is called a \textit{monomorphism} if $\text{Ker}(\varphi)$ is the trivial subspace. It is called an epimorphism if its image is N. It is called an isomorphism if it is a monomorphism and an epimorphism.

\textbf{Proposition 1.2 (Humphreys 2.2)} If $\varphi : L \to N$ is a homomorphism, then $\text{Im}(\varphi)$ is canonically isomorphic to $L/\text{Ker}(\varphi)$.

A Lie algebra L is called a linear Lie algebra if it is a subalgebra of $\text{gl}(V)$ for some finite dimensional vector space V.

\textbf{Proposition 1.3} Any simple Lie algebra is isomorphic to a linear Lie algebra

\section{Solvable Lie algebras}

Let L be a Lie algebra. We can define its derived series $L^{(0)}, L^{(1)}, \ldots$ by $L^{(0)} = L$ and

$$L^{(k)} = \left[L^{(k-1)}, L^{(k-1)}\right].$$ \hfill (4)

We call L \textit{solvable} if $L^{(n)} = \{0\}$ for some n.

\textbf{Proposition 2.1 (Humphreys 3.1)} Let L be a Lie algebra.
a) If L is solvable, so are all subalgebras and all homomorphic images.

b) If $I \subseteq L$ is a solvable ideal and L/I is solvable, then L is solvable.

c) If $I, J \subseteq L$ are solvable ideals, then $I + J$ is a solvable ideal.

Pf. Easy.

3 Nilpotent Lie algebras

Let L be a Lie algebra. We can define its descending central series L^0, L^1, \ldots by $L^0 = L$ and

$$L^k = [L, L^{k-1}] .$$

(5)

We call L nilpotent if $L^n = \{0\}$ for some n.

Proposition 3.1 (Humphreys 3.2) Let L be a Lie algebra.

a) If L is nilpotent, so are all subalgebras and all homomorphic images.

b) If $L/Z(L)$ is nilpotent, so is L.

c) If L is nilpotent, then $Z(L)$ is not trivial.

Pf. a) Easy

b) If $L/Z(L)$ is nilpotent then $L^n \subseteq Z(L)$ for some L. Then $L^{n+1} = \{0\}$.

c) There is some n so that $L^n = \{0\}$ but $L^{n-1} \neq \{0\}$. Clearly $\{0\} = L^n = [L, L^{n-1}]$ implies $L^{n-1} \subseteq Z(L)$.

Definition An element $x \in L$ is called **ad-nilpotent** if $(adx)^n = 0$ for some n. A Lie algebra L is called **ad-nilpotent** if every element of L is ad-nilpotent.

If $x, y \in L$, then $(adx)^n y = [x, [x, \ldots, [x, y] \ldots]] \in L^{n+1}$. Thus if L is nilpotent, it is ad-nilpotent.

Theorem 3.2 (Engel’s Theorem) If L is ad-nilpotent, it is nilpotent

Theorem 3.3 If L is a subalgebra of $\mathfrak{gl}(V)$ (V finite dimensional) and every $x \in L$ is a nilpotent transformation (meaning given x there is some $n \in \mathbb{N}$ so that $x^n.v = 0$ whenever $v \in V$), then there is some $v \in V$ so that $x.v = 0$ for all $x \in L$.
Induction on the dimension of \(L \). The theorem is clearly true for all \(L \) with \(\dim(L) = 1 \). This is because \(x \in L \) implies \(x^n.v = 0 \) for some \(n \), so that there is a largest \(i \in \mathfrak{K} \) with \(x^i.v \neq 0 \) but \(x^{i+1}.v = 0 \), in which case \(v_i = x^i.v \) is a zero eigenvector.

Assume the theorem is true for all Lie algebras \(K \) with \(\dim(K) < \dim(L) \). Let \(K \) be any maximal subalgebra of \(L \)—clearly subalgebras exist, for instance 1-dimensional subalgebras. We will prove first that \(K \) has codimension 1, and since the theorem is true for the action of \(K \) on \(V \) we are left just a single basis element whose action must be checked.

To prove \(K \) has codimension 1, consider the adjoint action of \(K \) on \(L/K \) (of course \(L/K \) is not a Lie algebra but only a vector space; still the action of \(K \) is well-defined (check)). By the inductive hypothesis, there is some vector \(z \in L \) so that \(z + K \in L/K \) is a zero-eigenvector for every element of \(K \). This means that \(K + \mathbb{F}z \) is also a subalgebra that strictly contains \(K \), implying that either \(K \) was not maximal (which it is) or that \(K + \mathbb{F}z \) is in fact \(L \), verifying that \(K \) has codimension 1. Since \(L = K + \mathbb{F}z \) and we showed \([z, k] \in K\) when \(k \in K \), \(K \) is an ideal.

Now let \(W \subseteq V \) be the subspace consisting of all zero-eigenvectors for \(K \), or

\[
W = \{ w \in V \mid k.w = 0 \text{ when } k \in K \}.
\] (6)

To see that \(L \) fixes \(W \), let \(w \in W \), \(y \in L \), and \(k \in K \). Since

\[
k.y.w = y.k.w + [k, y].w
\] (7)

Because \(k, [k, y] \in K \), the right-side is zero. Therefore \(y.w \in W \). Using again \(L = K + \mathbb{F}z \) and knowing that \(z \) has a nilpotent action on \(V \) and therefore on \(W \), there must be a zero-eigenvector \(w' \) for \(z \) in \(W \). Thus \(w' \) is a zero-eigenvector for all of \(L \). □

Proof of Engel’s theorem. Again we argue inductively on the dimension of \(L \), assuming Engel’s theorem holds for all Lie algebras \(K \) with \(\dim(K) < \dim(L) \). The adjoint action \(\text{ad} : L \to \mathfrak{gl}(L) \) expresses \(L \) as an algebra of nilpotent endomorphisms, which therefore have a common zero-eigenvector. Thus \(Z(L) \) is non-trivial. Since \(L/Z(L) \) is ad-nilpotent, and therefore nilpotent by the induction hypothesis, \(L \) is also nilpotent. □