1 New modules from old

A few preliminaries are necessary before jumping into the representation theory of semisimple algebras. First a word on creating new \(g \)-modules from old. Any Lie algebra \(g \) has an action on a 1-dimensional vector space (or \(\mathbb{F} \) itself), given by the trivial action. Second, any action on spaces \(V \) and \(W \) can be extended to an action on \(V \otimes W \) by forcing the Leibnitz rule: for any basis vector \(v \otimes w \in V \otimes W \) we define

\[
x.(v \otimes w) = x.v \otimes w + v \otimes x.w
\]

One easily checks that \(x.y.(v \otimes w) - y.x.(v \otimes w) = [x,y].(v \otimes w) \). Assuming \(g \) has an action on \(V \), it has an action on its dual \(V^* \) (recall \(V^* \) is the vector space of linear functionals \(V \to \mathbb{F} \)), given by

\[
(v.f)(x) = -f(x.v)
\]

for any functional \(f : V \to \mathbb{F} \) in \(V^* \). This is in fact a version of the “forcing the Leibnitz rule.” That is, recalling that we defined \(x.(f(v)) = 0 \), we define \(x.f \in V^* \) implicitly by

\[
x.(f(v)) = (x.f)(v) + f(x.v).
\]

For any vector spaces \(V, W \), we have an isomorphism

\[
\text{Hom}(V, W) \approx V^* \otimes W;
\]

so \(\text{Hom}(V, W) \) is a \(g \)-module whenever \(V \) and \(W \) are. This can be defined using the above rules for duals and tensor products, or, equivalently, by again forcing the Leibnitz rule: for \(F \in \text{Hom}(V, W) \), we define \(x.F \in \text{Hom}(V, W) \) implicitly by

\[
x.(F(v)) = (x.F)(v) + F(x.v).
\]
2 Schur’s lemma and Casimir elements

Theorem 2.1 (Schur’s Lemma) If \(g \) has an irreducible representation on \(\text{gl}(V) \) and if \(f \in \text{End}(V) \) commutes with every \(x \in g \), then \(f \) is multiplication by a constant.

Pf. The operator \(f \) has a complete eigenspace decomposition, which is preserved by every \(x \in g \). Namely if \(v \in V \) belongs to the generalized eigenspace with eigenvector \(\lambda \), meaning \((f - \lambda I)^k.v = 0 \) for some \(k \), then
\[
(f - \lambda I)^k.x.v = x.(f - \lambda I)^k.v = 0. \tag{6}
\]
Thus the generalized \(\lambda \)-eigenspace is preserved by \(g \) and is therefore a sub-representation. By irreducibility, this must be all of \(V \). Clearly then \(f - \lambda I \) is a nilpotent operator on \(V \) that commutes with \(g \). Thus \(V_0 = \{ v \in V \mid (f - \lambda I).v = 0 \} \) is non-trivial. But \(V_0 \) is preserved by \(g \), so must equal \(V \). Therefore \(f = \lambda I \). \(\square \)

Now assume \(V \) is a \(g \)-module, or specifically that a homomorphism \(\varphi : g \to \text{gl}(V) \) exists. As with the adjoint representation we can establish a bilinear form \(B_{\varphi} : g \times g \to \mathbb{F} \)
\[
B_{\varphi}(x, y) = \text{Tr} (\varphi(x) \varphi(y)). \tag{7}
\]
If \(\varphi \) is the adjoint map, of course this is the Killing form. Clearly
\[
B_{\varphi}([x, y], z) = B_{\varphi}(x, [y, z]) \tag{8}
\]
so that the radical of \(B_{\varphi} \) is an ideal of \(g \). Also, the Cartan criterion implies that the image under \(\varphi \) of the radical of \(B_{\varphi} \) is solvable.

Thus if \(\varphi \) is a faithful representation of a semisimple algebra, \(B_{\varphi} \) is non-degenerate. Letting \(\{ x_i \}_{i=1}^n \) be a basis for \(g \), a (unique) dual basis \(\{ y_i \}_{i=1}^n \) exists, meaning the \(y_i \) satisfy
\[
B_{\varphi}(x_i, y_j) = \delta_{ij}. \tag{9}
\]
We define the *casimir element* \(c_{\varphi} \) of such a representation by
\[
c_{\varphi} = \sum_{i=1}^n \varphi(x_i)\varphi(y_i) \in \text{End} V. \tag{10}
\]

Lemma 2.2 Given a faithful representation \(\varphi \) of a semisimple Lie algebra, the casimir element commutes with all endomorphisms in \(\varphi(g) \).

Pf. Let \(x \in g \) be arbitrary, and define constants
\[
[x, x_i] = a_{ij} x_j \quad [x, y_i] = b_{ij} x_j \tag{11}
\]
We have

\[- b_{ji} = - \sum_{k=1}^{n} b_{jk} \delta_{ik} = - B_{\varphi}(x_{i}, [x, y_{j}]) = B_{\varphi}([x, x_{i}], y_{k}) = \sum_{k=1}^{n} a_{ij} \delta_{jk} = a_{ij}\]

(12)

Therefore

\[\begin{align*}
[\varphi(x), c_{\varphi}] &= \sum_{i=1}^{n} [\varphi(x), \varphi(x_{i})\varphi(y_{i})] \\
&= \sum_{i=1}^{n} [\varphi(x), \varphi(x_{i})] \varphi(y_{i}) + \sum_{i=1}^{n} \varphi(x_{i}) [\varphi(x), \varphi(y_{i})] \\
&= \sum_{i=1}^{n} \varphi([x, x_{i}]) \varphi(y_{i}) + \sum_{i=1}^{n} \varphi(x_{i}) \varphi([x, y_{i}]) \\
&= \sum_{i,j=1}^{n} a_{ij} \varphi(x_{j}) \varphi(y_{i}) + \sum_{i,j=1}^{n} b_{ij} \varphi(x_{i}) \varphi(y_{j}) \\
&= 0
\end{align*}\]

(13)

Lemma 2.3 If \(\varphi : g \rightarrow gl(V) \) is an irreducible, faithful representation of the semisimple Lie algebra \(g \), then the Casimir endomorphism \(c_{\varphi} \) acts by constant multiplication, with the constant equal to \(\dim(g)/\dim(V) \).

Pf. That \(c_{\varphi} \) acts by constant multiplication by some \(\lambda \in \mathbb{F} \) follows from Schur’s lemma. We see that

\[\begin{align*}
\text{Tr}(c_{\varphi}) &= \sum_{i=1}^{\dim(g)} \text{Tr}(\varphi(x_{i})\varphi(y_{i})) = \sum_{i=1}^{\dim(g)} B_{\varphi}(x_{i}, y_{i}) = \dim(g)
\end{align*}\]

(14)

and also that \(\text{Tr}(c_{\varphi}) = \lambda \cdot \dim(V) \). Thus \(\lambda = \dim(g)/\dim(V) \).

\[\square\]

3 Weyl’s Theorem

Lemma 3.1 If \(\varphi : g \rightarrow gl(V) \) is a representation and \(g \) is semisimple, then \(\varphi(g) \subseteq gl(V) \).

Pf. Because \([g, g] = g \), we have \([\varphi(g), \varphi(g)] = \varphi([g, g]) = \varphi(g) \).

\[\square\]

Theorem 3.2 (Weyl) Let \(\varphi : g \rightarrow gl(V) \) be a representation\(^1\) of a semisimple Lie algebra. Then \(\varphi \) is completely reducible.

\(^1\)under the usual conditions: \(g \) and \(V \) are finite dimensional, and the field is algebraically closed and of characteristic 0.
Thus we have that \(F \) operator acts as an element of \(g \) and since \(\varphi \) has codimension 1 submodule of \(V/W \), by multiplication by 0. All this means that \(c_\varphi : V \to V \) has a 1-dimensional Kernel that trivially intersects \(W \), so

\[
V = W \oplus \text{Ker}(c_\varphi).
\]
(15)

Since \(c_\varphi \) commutes with \(\varphi(g) \), we have that \(\text{Ker}(c_\varphi) \) is indeed a (trivial) \(g \)-module.

Step II: Case of a general codimension 1 irreducible submodule. Let \(W \subset V \) be an arbitrary codimension 1 submodule of \(g \). If \(W \) is not irreducible, there is another submodule \(V_1 \subset W \), which we can assume to be maximal. Then \(V/W_1 \) is an irreducible submodule of \(V/W \), and still has codimension 1. Thus by step I, we have

\[
V/W_1 = W/W_1 \oplus V_1/W_1,
\]
(16)

where \(V_1/W_1 \) is a 1-dimensional submodule of \(V/W_1 \). Because \(\dim(W) \neq 0 \), we have \(\dim(V_1) < \dim(V) \). We also have that \(W_1 \) is a codimension 1 submodule of \(V_1 \).

Since \(\dim(V_1) < \dim(V) \), an induction argument lets us assert \(V_1 \) that \(V_1 = W_1 \oplus \mathbb{F}z \), for some \(z \in V_1 \), as \(g \)-modules. Note that \(\mathbb{F}z \cap W = \{0\} \), so \(V = W \oplus \mathbb{F}z \) as vector spaces; the question is whether this is a \(g \)-module decomposition. However because \(V/W_1 = (W/W_1) \oplus (V_1/W_1) \), we have \(g.W \subseteq W \), so indeed \(W \oplus \mathbb{F}z \) is a \(g \)-module decomposition.

Step III: The general case. Assume \(W \subset V \) is submodule of strictly smaller dimension, and let \(\mathcal{V} \subset \text{Hom}(V, W) \) be the subspace of \(\text{Hom}(V, W) \) consisting of maps that act by constant multiplication on \(W \). Let \(W \subset \mathcal{V} \) be the subset of maps that act as multiplication by zero on \(W \). Moreover, \(\mathcal{V} \subset \mathcal{W} \) has codimension, as any element of \(\mathcal{V}/W \) is determined by its scalar action on \(W \).

However we can prove that \(\mathcal{V} \) and \(W \) are \(g \)-modules. Letting \(F \in \mathcal{V}, w \in W \), and \(x \in g \), we have that \(F(w) = \lambda w \) for some \(\lambda \in \mathbb{F} \) and, since \(x.w \in W \) also \(F(x.w) = \lambda x.w \). Thus

\[
(x.F)(w) = x.(F(w)) - F(x.w) = x.(\lambda w) - \lambda(x.w) = 0.
\]
(17)

Thus all operators in \(g \) take \(\mathcal{V} \) to \(W \), so in particular they are both \(g \)-modules.

By Step II above, there is a \(g \)-submodule in \(\mathcal{V} \) complimentary to \(W \), spanned by some operator \(F_1 \). Scaling \(F_1 \) we can assume \(F_1|_W \) is multiplication by 1. Because \(F_1 \) generates a 1-dimensional submodules and \(g \) acts as an element of \(\mathfrak{sl}(1, \mathbb{C}) \approx \{0\} \), we have \(g.F_1 = 0 \). Thus we have that \(x \in g, v \in V \) implies

\[
0 = (x.F_1)(v) = x.(F_1(v)) - F_1(x.v).
\]
(18)
This is the same as saying F_1 is a \mathfrak{g}-module homomorphism $V \to W$. Its kernel is therefore a \mathfrak{g} module, and, since F_1 is the identity on V and maps V to $W,$ must be complimentary as a vector space to W. Therefore

$$V = W \oplus Ker(F_1) \quad \text{(19)}$$

as \mathfrak{g}-modules.

□