
Lecture 1 - Statement

Brian Weber

July 1, 2013

The aim of this series of lectures is to apply methods of analysis to problems in Rie-
mannian geometry.

1 Best Metrics

1.1 Motivations

A motivating problem is the elucidation of the set optimal metrics on a given differentiable
manifold. Even what “optimal” means is a matter of contention, but normally includes
“most symmetrical possible,” given the underlying topology. For instance round metrics
on S2 are by nearly any consideration “optimal’— in particular it has maximum possible
symmetry, as it is homogeneous and isotropic. Note that no Killing fields exist on com-
pact surfaces of negative Euler characteristic, so global symmetries do not exist (a result of
Bochner’s); likewise for Einstein metrics on manifolds of negative einstein constant. How-
ever, the constant curvature metrics are invariant on the universal cover.

“Optimal” metrics are often found as minimizers of a global “energy” functionals, to
be discussed below. Does a given differential manifold possess a metric that optimizes some
functional? What do minimizing sequences look like? If no such metric exists, how do
minimizing sequences degenerate? Can we hope for any kind of “geometric decomposition”
akin to Thurston-Perelman geometrization of 3-manifolds?

A second fundamental problem, possibly more tractible, is the question of how many
optimal metrics a manifold may possess. If, for instance, a manifold M admits an Einstein
metric, how many einstein metrics might it possess? Do these metrics collect to form any
kind of domain, or are they “isolated”?
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1.2 Moduli Spaces

The space of Riemannian metrics, Met(M), on a differentiable manifold M is the set of
symmetric 2-tensors g on M so that g is positive definite. Clearly this is a cone. The
moduli space of Riemannian metrics on M is the space of metrics, modulo the relation of
diffeomorphism:

Mod(M) = Met(M) / Diff(M). (1)

In the positiive case, the situation is rigid: the manifolds S2 and RP 2 each admit precisely
one metric of sectional curvature +1, up to diffeomorphism. Notice that there are many
metrics of constant section al curvature on S2. For instance, if ϕ is any fractional linear
transformation, then it is a diffeomorphism on S2 (indeed in the complex setting, it is a
biholomorphism). Since the fractional linear transformations are just SL(2,R) as a group,
and because this group is non-compact, there are divergent sequences of metrics of constant
curvature +1 on S2. Working with moduli spaces rather than metrics simplifies matters
considerably—in essence it filters away “bad” coordinate choices.

1.3 The L2 metric on Met(M) and Mod(M)

Among possible metric structures on the moduli space of Riemannian metrics is the L2-
distance—among it’s many disadvantages it has the advantage of being easy to define.
Given a metric g on a compact manifold M , any symmetric 2-tensor h can be regarded as
a “tangent vector,” in the sense that the family of 2-tensors s 7→ g + sh is a metric for
sufficiently small values of s. We can define the “length” of the vector h at the metric g to
be (∫

M

hijhklg
ikgjl dV olg

) 1
2

=

(∫
M

|h|2g dV olg
) 1

2

= ‖hij‖L2,g (2)

Then given an arbitrary continuously differentiable family of metrics g(s), s ∈ [0, 1] we have
the length of the path (∫ 1

t=0

∥∥∥∥dgds
∥∥∥∥2

L2,g(s)

dt

) 1
2

(3)

Whether a minimizing path exists between two metrics is not certain, but at the very least,
in the collection of paths from one metric to another the L2 path length has an infimum.
This is the L2 distance—it is invariant under Diff(M), so it passes to Mod(M). Later we
shall discuss other distance functions, such as the Gromov-Hausdorff distance.
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2 Canonical metrics

One typical definition (not necessarily universally agreed upon) for the term “canonical
metric” is a metric that optimizes a Riemannian curvature functional. The Euler-Lagrange
equation for a well-chosen functional is normally some form of elliptic equation for some
geometric quantity or quantities. This provides a way for analytic techniques to be brought
to bear on the problem of understanding these metrics.

Common functionals are the quadratic curvature functionals∫
|Rm |2 dV ol,

∫
R2 dV ol,

∫
|W |2 dV ol (4)

and the Einstein-Hilbert functional ∫
RdV ol. (5)

The Euler-Lagrange equations of each of these are relatively tractible; in particular, if the
variation is gij(s) = gij + shij , a straightforward computation provides

d

ds

∫
RdV ol = −

∫ 〈
Ric − 1

2
Rg, h

〉
g

dV olg (6)

so that the Euler-Lagrange equations are

Ricij −
1

2
Rgij = 0. (7)

Except in dimension 2, this implies that the metric is Ricci-flat. In particular
∫
RdV ol = 0

is the only critival value. In harmonic coordiates, we have the quasi-linear 2nd order system
of equations

4 (gij) + Qij(g, ∂g) = −2Ricij (8)

so the Euler-Lagrange equations (that is, Ricij = 0) do indeed provide an elliptic condition.

However, consider the homogeneity of these functionals. As distance is scaled by d,
the n-form dV ol is scales by dn, |Rm |2, etc scale by d−4, and R scales by d−2. Thus the
quadratic functionals can be expected only to have non-trivial minimizers only in dimension
4, and the Einstein-Hilbert functional has non-trivial minimizers only in dimension 2. To
see what is meant by this, if we replace g by d2g, we obtain∫

M

Rd2g dV old2g = dn−2

∫
M

Rg dV olg (9)

so letting d ↘ 0 minimizes this functional if it is positive, and d → ∞ minimizes it if it is
negative somewhere.
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A word about the other quadratic functionals in the scale-invariant 4-dimensional case:
optimizers of

∫
|Rm |2 (as metric-compatible connections are varied) are metrics of harmonic

curvature, namely Rmijk
l
,l = 0, which is a first-order elliptic equaiton. Opimizers of

∫
|W |2

are Bach-flat, which is an elliptic condition, provided sectional curvature is specified (to be
constant, for instance).

Possibly we could consider scale-invariant functionals such as∫
|Rm |n2 dV ol, (10)

but the Euler-Lagrange equations are essentially un-interpretable. It is better to consider
scale-invariant functionals of the type

Vol
4−n
n

∫
|Rm |2 dV ol or Vol

2−n
n

∫
RdV ol. (11)

With regards the Einstein-Hilbert functional, we find that

d

ds

(
Vol

2−n
n

∫
RdV ol

)
=

(
2− n

2n

)
Vol

2−n
n −1

∫
〈g, h〉 dV ol

∫
RdV ol

− Vol
2−n
n

∫ 〈
Ric− 1

2
Rg, h

〉
dV ol.

(12)

Letting

Λ =
n− 2

2n
Vol−1

∫
RdV ol (13)

be a multiple of the average scalar curvature, we have

d

ds

(
Vol

2−n
n

∫
RdV ol

)
= −Vol

2−n
n

∫ 〈
Ric− 1

2
Rg + Λ g, h

〉
dV ol. (14)

so the Euler-Lagrange equations are therefore

Ricij −
1

2
Rgij + Λ gij = 0. (15)

We still have
n

2
R − R = nΛ (16)

so that R is constant (when n 6= 2), but not necessarily zero. Since 2n
n−2Λ = R, the Euler-

Lagrange equation can be rewritten

◦
Ricij = 0. (17)

where

◦
Ricij , Ricij −

1

n
Rgij (18)

is the trace-free Ricci tensor. Such metrics are called Einstein metrics.
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3 Einstein metrics

Throughout these lectures we shall emphasize the Einstein case. Indeed Einstein metrics
are the best understood of the canonical metrics, and the theory is the most complete.

In the 2-dimensional case, the situation is very well understood. The equation

Ric =
1

2
Rg (19)

is vacant. However if R = const is imposed, this is the equation of constant sectional
curvature. After scaling, we may assume R ∈ {+1, 0,−1}. The Gauss-Bonnet formula

χ(Σ) =
1

2π

∫
RdV ol (20)

imposes volume control on such manifolds (when χ 6= 0). In the case R = −1, it is impossible
that injectivity radii are uniformly small.

The stuation here is very well understood: every closed Riemannian 2-manifold admits
a metric of sectional curvature +1, 0, or −1, as its Euler number is greater than zero,
zero, or less than zero, respectively. As we have seen, the sphere, and therefore the real
projective plane, have trivial moduli spaces. The Torus and Klein bottles each admit 2-
parameter moduli spaces. A surface Σ of negative Euler number, however, admits families
of metrics of sectional curvature −1 (metrics of constant negative sectional curvature are in
1-1 correspondance with complex structures on such a manifold; to learn more, consult the
theory of uniformization of surfaces). Further, the moduli spaces can be non-compact, and
“cusp” singularities can form in the limit.

The 3-dimensional case is likewise tractible. Einstein metrics are Ricci-constant, and
therefore have constant sectional curvature. In addition, in the negative case, moduli are
trivial. The question of which manifolds admit such metrics has been answered elsewhere.

The 4-dimensional case is currently at the center of a great deal of activity. It is
well-known that the Riemann tensor splits into four orthogonal pieces:

Rm =
R

24
g ◦ g +

1

2

◦
Ric ◦g + W+ + W− (21)

where ◦ is used to denote the Kulkarni-Nomizu product. The tensors W+ and W− are
orthogonal components of the Weyl tensor. They are characterized as follows. Recall that
the Hodge star operator ∗ is an idempotent on

∧2
, so that is eigenvalues are ±1. Therefore∧2

=
∧+

⊕
∧−

. (22)

Because ∗ is an orthogonal map, we have that
〈∧+

,
∧−〉

= 0. If Rm and W are regarded

as linear maps
∧2 →

∧2
, one can show

∗W = W∗ (23)
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so that W preserves the
∧+

and
∧−

eigenspaces. We simply set W+ = W
∣∣∧+ and W− =

W |∧− .

The Chern-Gauss-Bonnet formulae in dimension 4 read

χ(M) =
1

8π2

∫
1

24
R2 − 1

2
|
◦

Ric |2 + |W |2

τ(M) =
1

12π2

∫
|W+|2 − |W−|2

(24)

provide a great deal of information. For instance, the L2 norm of the Riemann tensor is

|Rm |2 =
1

6
R2 + 2|

◦
Ric |2 + |W |2. (25)

In the case of compact Einstein 4-manifolds, L2(|Rm |) is uniformly bounded by χ(M)! In
addition,

2χ(M) + 3τ(M) =
1

4π2

∫
1

24
R2 + 2|W+|2 ≥ 0

2χ(M) − 3τ(M) =
1

4π2

∫
1

24
R2 + 2|W−|2 ≥ 0.

(26)

The inequality 2χ± 3τ ≥ 0 is known as the Hitchin-Thorpe inequality (in addition, equality
occurs only when M is flat, or a quotient of a Calabi-Yau manifold, as shown by Hitchin).

4 Euler-Lagrange Equations

The Euler-Lagrange equations for the scale-invariant Einstein-Hilbert functional are pre-
cisely that

◦
Ric = 0. (27)

This is in fact an elliptic condition. One way to see this is by using the Binchi identities to
compute 4Rm. We have

Rmijkl,ss = −Rmijls,ks − Rmijsk,ls

= −Rmijls,sk − RmkstiRmtjls − RmkstjRmitls − RmkstlRmijts − RmkstsRmijlt

− Rmijsk,sl − RmlstiRmtjsk − RmlstjRmitsk − RmlstsRmijtk − RmlstkRmijst

(28)

Rmijkl,ss = Rmsils,jk + Rmjsls,ik + Rmsisk,jl + Rmjssk,il

− RmkstiRmtjls − RmkstjRmitls − RmkstlRmijts − RmkstsRmijlt

− RmlstiRmtjsk − RmlstjRmitsk − RmlstsRmijtk − RmlstkRmijst

(29)

Rmijkl,ss = Ricil,jk − Rmjl,ik − Rmik,jl + Rmjk,il

− RmkstiRmtjls − RmkstjRmitls − RmkstlRmijts − RmkstsRmijlt

− RmlstiRmtjsk − RmlstjRmitsk − RmlstsRmijtk − RmlstkRmijst

(30)
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Schematically, we write

4Rm = ∇2 Ric + Rm ∗Rm . (31)

Now consider

1

2
4|Rm |2 = |Rm |4|Rm | + |∇|Rm ||2

1

2
4|Rm |2 = 〈Rm, 4Rm〉 + |∇Rm |2

(32)

and that |∇|Rm ||2 ≤ |∇Rm |2. We have

|Rm |4|Rm | = 〈Rm, 4Rm〉 + |∇Rm |2 − |∇|Rm ||2

≥ 〈Rm, Rm ∗Rm〉
≥ −C|Rm |3.

(33)

where C = C(n). Setting u = 1
C |Rm |, then off the zero-locus we have

4u ≥ −u2 (34)

On the zero locus, this equation continues to hold in the barrier sense.

5 The Role of Analysis

Standard references on the theory of second order elliptic differential equations discuss the
regularity of inequalities of the form

4u ≥ −f u (35)

where f ≥ 0. Encouragingly, we find the following typical result:

Theorem 5.1 If Ω ⊂ Rn is a pre-compact domain, if u ∈ L1(Ω), if

4u ≥ −fu, f ≥ 0 (36)

and if f ∈ Lp for some p > n
2 , then

u ∈ L∞ (37)

where ‖u‖L∞ has a uniform bound depending on n, p, and ‖f‖Lp .

In our equation (34), we can set f = Cu, and so analysis holds out the possibility that some
Lp bound on u = |Rm | implies uniform pointwise sectional curvature bounds.

Now the minimization of a functional might itself provide such a bound, but one notices
that the scale-invariant functionals we have considered can only provide bounds at the
critical value p = n

2 , or else on p = 2 which is of little help when n ≥ 4. Indeed the
4-dimensional case is the critical case for this reason. Analysis does indeed give sectional
curvature bounds a.e., along with the phenomenon of “concentration of curvature.” We
shall explore the details and implications in the following lectures.
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6 The Sobolev Inequality: the nexus of geometry and
analysis

If Ω is an n-dimensional domain with a Riemannian metric and ν > 0, we define the ν-
isoperimetric constant of Ω to be

Iν(Ω) = sup
Ω′⊂⊂Ω

Vol(Ω′)
ν−1
ν

Area(∂Ω′)

where Area indicates Hausdorff (n− 1)-measure. If Ω is a closed Riemannian manifold, we
take the infimum over domains Ω′ with Vol Ω′ ≤ 1

2 Vol Ω; if some such restriction is not
made then of course the infimum is zero. Note that if ν < n then Iν(Ω) =∞.

On the other hand we define the ν-Sobolev constant of Ω by

Sν(Ω) = sup
f∈C∞c (Ω)

(∫
Ω
|f |

ν
ν−1
) ν−1

ν∫
Ω
|∇f |

.

If Ω is a closed Riemannian manifold, we take the infimum over functions with Vol(supp f) <
1
2 Vol(Ω); if some such restriction is not made then of course the infimum is zero.

Theorem 6.1 (Federer-Fleming)

Iν(Ω) = Sν(Ω).

Pf
Pf that Sν(Ω) ≤ Iν(Ω).

With ∫
|∇f | ≥ Sν(Ω)−1

(∫
f

ν
ν−1

) ν−1
ν

,

we can let f ≡ 1 on Ω′, f ≡ 0 outside Ω′
(ε)

(the ε-thickening of Ω′), and f(p) = 1 −
ε−1 dist(Ω′, p) on Ω′

(ε) − Ω′. As ε↘ 0 we have

lim
ε↘0

(∫
f

ν
ν−1

) ν−1
ν

= Vol(Ω′)
ν−1
ν

lim
ε↘0

∫
|∇f | = lim

ε↘0

Vol(Ω′
(ε) − Ω′)

ε
= Area(∂Ω′).

Therefore

Area(∂Ω′) = lim
ε↘0

∫
|∇f | ≥ lim

ε↘0
Sν(Ω)−1

(∫
f

ν
ν−1

) ν−1
ν

= Sν(Ω)−1 Vol(Ω′)
ν−1
ν .
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Pf that Iν(Ω) ≤ Sν(Ω).

To simplify the proof, assume that f is C∞ and critical points of f are isolated; any C0,1

function is a limit such functions. Given a nonnegative C∞c function f : Ω → R and given
a number t, let At = f−1(t) and let Ωt = f−1([t,∞]). Locally (near a regular point of f)
we can parametrize Ω′ by letting f be one coordinate, and putting some coordinates on
At. We can split the cotangent bundle by letting df/|df | be one covector in an orthonormal
coframe. Then if dσt indicates the wedge product of the remaining vectors, we have Then
dV = 1

|∇f |df ∧ dσt. Therefore∫
M

|∇f | dV =

∫ max(f)

min(f)

∫
At

dσt df =

∫ ∞
0

Area(At) dt

≥ Iν(Ω)−1

∫ ∞
0

Vol(Ωt)
ν−1
ν dt

The equality
∫
M
|∇f | dV =

∫∞
0

Area(At) dt is called the coarea formula. Changing the
order of integration, á la calculus III, gives∫

f
ν
ν−1 =

ν

ν − 1

∫
Ω

∫ f(p)

0

t
1

ν−1 dt dV ol(p)

=
ν

ν − 1

∫ ∞
0

∫
Ωt

t
1

ν−1 dV dt =
ν

ν − 1

∫ ∞
0

t
1

ν−1 Vol(Ωt) dt

The result follows from the following lemma.

Lemma 6.2 If g(t) is a nonnegative decreasing function and s ≥ 1, then(
s

∫ ∞
0

ts−1g(t) dt

) 1
s

≤
∫ ∞

0

g(t)
1
s dt

Pf
We have

d

dT

(
s

∫ T

0

ts−1g(t) dt

) 1
s

= T s−1g(T )

(
s

∫ T

0

ts−1g(t) dt

) 1
s−1

≤ T s−1g(T )
1
s

(
s

∫ T

0

ts−1 dt

) 1
s−1

= g(T )
1
s .

Since d
dT

∫ T
0
g(t)

1
s dt = g(T )

1
s , we have(

s

∫ T

0

ts−1g(t) dt

) 1
s

≤
∫ T

0

g(t)
1
s dt

for all T . �
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7 Suggested Problems

1) Let g(t) = g + sh for s ∈ (−ε, ε) be a family of metrics, and let x1, . . . , xn be a
coordinate system.

a) Define hij = hstg
sigtj , and let dV ol be the alternatig n-tensor dV ol =

√
det gijdx

1∧
· · · ∧ dxn. Verify the following variation formulae for the following tensors quan-
tities:

d

ds
gij = −hij

d

ds
log det g = 〈h, g〉

d

ds
dV ol =

1

2
〈h, g〉 dV ol.

(38)

b) Verify the following variation formulae for the Christoffel symbols:

d

ds
Γkij =

1

2

(
∇∂/∂xi hjs + ∇∂/∂xi his − ∇∂/∂xs hij

)
gsk (39)

c) Verify the following variation formulae for the Ricci and scalar curvatures:

d

ds
Ricij =

1

2
(Rmijtj

mhms + his,jt + hjt,si) g
st

+
1

2
(Rici

mhmj − (Tr h),ij − (4h)ij)

d

ds
R = −4(Tr h) + hsu,tvg

stguv + 〈Ric, h〉g

(40)

(hint: use the expression for Ricij in Christoffel symbols, and assume coordinates
are chosen so Γkij = 0 at a point p).

2) Using the set-up and results from probelm (1), verify explicitly that

d

ds
Vol (M) =

1

2

∫
〈h, g〉g dV olg

d

ds

∫
RdV ol = −

∫ 〈
Ric − 1

2
Rg, h

〉
dV ol

d

ds

(
Vol(M)

2−n
n

∫
M

RdV ol

)
= −Vol(M)

2−n
n

∫
M

〈
Ric − 1

2
Rg + Λg, h

〉
dV ol

(41)

3) If Ω is any domain in a Riemannian manifold, show that Iν(Ω) =∞ when ν < n (hint:
show this first for domains in Rn).

4) If Ω is not pre-compact, show, by example, that Sν(Ω) =∞ unless ν = n.

5) Develop a geodesic equation for paths g(s) in the L2 metric on Met(M). This is done,
in the usual way, by creating a variation gt(s) of the path g(s) and requiring that the
L2-length be stable (have t-derivative zero) under an arbitrary such variation (in the
C1 category).
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