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1 Hypotheses

How can sequences of manifolds with a canonical metric degenerate? In the Einstein case,
under conditions on energy, diameter, and volume, we will see that they degenerate, at
worst, to manifolds with point-like singularities, which are of orbifold type.

Higher dimensional case:
∫
|Rm |n2 < Λ, Diam(M) < D, Vol(M) ≥ ν, Ric ∈ {−1, 0, 1}.

4-dimensional Einstein case: χ(M) < Λ, Diam(M) < D, Vol(M) ≥ ν, Ric ∈ {−1, 0, 1}.
If Ric = +1 we can eliminate the diamater bound.

2 Distance functions on Mod(M)

One distance function is the Gromov-Hausdorff distance. This will be discussed elsewhere,
so we won’t dwell, but briefly it is a distnace function on closed metric spaces, defined to be

distGH(M1, M2) = inf
Z

(
sup
x1∈M1

inf
x2∈M2

distZ(x1, x2) + sup
x2∈M2

inf
x1∈M1

distZ(x1, x2)

)
(1)

where the infimum is taken over not just all xi ∈ Mi, but over all possible embeddings
M1,M2 ↪→ Z as Z varies over all possible metric spaces that allow such embeddings.

It is best to restrict the Gromov-Hausdorff metric to compact manifolds-with-boundary
M . If, for instance, closed but non-compact manifolds are allowed, in fact the topology
induced by the Gromov-Hausdorff distance is not only non-compact, but not locally compact,
nor even locally paracompact! And that is in addition to the fact that distances between
metric spaces might be infinite. If we make the stated restriction however, not only is distGH
a true metric, then although the topology is not compact, it is locally compact.

Generally speaking, if f : M → N is a map between compact metric spaces (M,dM )
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and (N, dN ), we define the dilation constant dil(f) of the map to be

dil(f) = sup
x 6=y∈M

dN (f(x), f(y))

dM (x, y)
. (2)

If we are looking at metrics on the same underlying manifold (or manifold-with-boundary),
we can define what is called the Lipschitz distance on Met(M), by letting d1, d2 be the
distance functions associated to the two metrics g1, g2, and letting Id be the identity map
from (M,d1) to (M, d2) as follows

Lip(g1, g2) = sup
x 6=y

∣∣∣∣log
dist2(x, y)

dist1(x, y)

∣∣∣∣ + sup
x 6=y

∣∣∣∣log
dist1(x, y)

dist2(x, y)

∣∣∣∣
= |log dil(Id)| +

∣∣log dil(Id−1)
∣∣ (3)

This is not diffeomorphism invariant. To fix this, we take the infimum not only over x, y ∈M
but over diffeomorphisms ϕ : (M, g1)→ (M, g2). We have the definition

Lip(g1, g2) = sup
ϕ:M→M

|log dil(ϕ)| +
∣∣log dil(ϕ−1)

∣∣ (4)

which is a distance function on Mod(M).

We also need the Ck,α and Lk,p topologies on Mod(M). If gi is a sequence of Rieman-
nian metrics on M converges is the Ck,α topology if, whenever ϕ : Ω→M is a differentiable
parametrization of some neighborhood in M , the pullback metrics ϕ∗gi converge in the
topology Ck,α(Ω). Notice that this does not provide any distance functions on Mod(M),
only a topology.

3 Compactness and Pre-Compactness Theorems

For future reference, we present a pre-compactness result due to Gromov, and a compactness
result due to Cheeger.

Theorem 3.1 (Gromov’ Precompactness Theorem) If Λ, D > 0 and (Mn
i , gi) is a

sequence of Riemannian manifolds with Ric ≥ −Λ and Diam(M) ≤ D, then there is a
metric space (M∞, d∞) so that, after passing to a subsequence, we have that

(Mi, di) → (M∞, d∞) (5)

in the Gromov-Hausdorff topology. Further, (M∞, d∞) is a length space.

Theorem 3.2 (Cheeger Diffeofiniteness) Given i0, D0, and Λ ≥ 0, then if {(Mn
α , gα)}α∈A

is the set of all Riemannian manifolds with injgi Mi ≥ i0, Diamgi(Mi) ≤ D, and |Rm | ≤ Λ,
then the manifolds fall into one of only finitely many diffeomorphisms types.
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Theorem 3.3 (eg. Greene-Wu (1988)) Given i0, D0, and Λ ≥ 0, assume (Mn
i , gi) is

a sequence of Riemannian manifolds with injgi Mi ≥ i0, Diamgi(Mi) ≤ D, and |Rm | ≤ Λ.
Then a smooth differentiable Riemannian manifold (M∞, g∞) exists with g∞ of class C1,α,
any α ∈ (0, 1), so that, after passing to a subsequence, we have that

(Mi, gi) → (M∞, g∞) (6)

in the Gromov-Hausdorff, Lipschitz, and C1,α topologies.

Lastly, it is possible to relax the condition on injectivity radii:

Theorem 3.4 (Cheeger’s Lemma) Given positive n, ν, D, Λ, there exists a constant i0 =
i0(n, ν, D, Λ) so that if (Mn, g) is a Riemannian manifold with Vol M ≥ ν, DiamM ≤ D,
and |Rm | ≤ Λ, then inj M ≥ i0.

4 Epsilon-Regularity

Recall the theorem from last time:

Theorem 4.1 (Epsilon-regularity) There exist constants C = C(n, Sn), ε0 = ε0(n, Sn)
so that (∫

Bq(r)

|Rm |n2
) 2

n

≤ ε0 (7)

implies

sup
Bq(r/2)

|Rm | ≤ Cr−2

(∫
Bq(r)

|Rm |n2
) 2

n

. (8)

5 Weak Convergence

5.1 The “good” and “bad” sets

Let

Gr =

{
p ∈M

∣∣∣ ∫
Bp(r)

|Rm |n2 < ε
2
n
0

}
. (9)
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Br =

{
p ∈M

∣∣∣ ∫
Bp(r)

|Rm |n2 ≥ ε
2
n
0

}
. (10)

be its compliment. We show that Br is a set of small content, when Ricci curvature has an
a priori bound.

Cover Br with balls Bqi(2r) of radius 2r so that the balls Bqi(r) are disjoint. By
definition (∫

Bqi
(r)

|Rm |n2
) 2

n

≥ ε0. (11)

Therefore

Lemma 5.1 If (Mn, g) is a Riemannian manifold with(∫
M

|Rm |n2
) 2

n

≤ Λ, (12)

then Br can be covered with at most

Λ ε−10 (13)

many balls of radius 2r.

Corollary 5.2 If (Mn, g) is a Riemannian manifold with(∫
M

|Rm |n2
) 2

n

≤ Λ (14)

and Ric ≥ −1 and r ≤ 1, then

Vol Br ≤ CnΛε−10 rn. (15)

�

Now proviided Ric ≥ −1 we have

M = Gr ∪ Br (16)

where

|Rm | ≤ r−2 on Gr (17)

and

Vol Br ≤ CnΛε−10 rn. (18)
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5.2 Convergence

Consider a sequence of metrics gi on the Einstein manifolds M4
i . Let Mi = Br,i ∪ Gr,i be

the decomposition from above.

Given r, Cheeger diffeofiniteness gives us finitely many diffeomorphism classes among
the

{Gr,i}i. (19)

There we can consider the differentiable manifolds Gr,i fixed and evolve the metrics. With
sectional curvature bounded, we obtian C1,α of the metrics (after passing to a subsequence).
The elliptic equality 4Rm = Rm ∗Rm implies higher regularity convergence: Ck,α.

Now shrink r a little, and pass to a further subsequence. Letting rj be a sequence of
radii rj ↘ 0, we have sequences

Grj , ij (20)

A diagonal subsequence converges to a Riemannian manifold with at most Λε−10 many points
removed. Volume is continuous in the limit, and

∫
|Rm |2 is lower semi-continuous.

6 Singularities

Here is a quick overview of what happens in the point-like singularities.

Sectional curvature is increasing unboundedly, but one can scale the metric so that
|Rm | ≤ 1, and take a pointed limit.

These limits are Ricci-flat manifolds, with positive asymptotic volume ratio and ε0 <∫
|Rm |n2 < Λ. Clearly |Rm | = o(r−2), but in fact one can show that |Rm | = O(r−2−δ) for

some δ. This is enough to rule out critical points of the distance function, so outside some
compact subset Ω, topology is trivial: M \ Ω is diffeomorphic to a quotient of a Euclidean
annulus. Such a manifold is called ALE; almost locally Euclidean.

Assuming original manifolds were simply connected, the bubbles have trivial b1. By
Poincare duality, b3 = 0; therefore χ(bubble) ≥ 1. In fact χ(bubble) > 1—thus these bubbles
absorb homology!

χ(Bubble) =
1

|Γ|
+

1

8π2

∫
|W |2 (21)
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