In the one variable case $z = f(y)$ and $y = g(x)$ then $\frac{dz}{dx} = \frac{dz}{dy} \frac{dy}{dx}$.

When there are two independent variables, say $w = f(x, y)$ is differentiable and where both x and y are differentiable functions of the same variable t then w is a function of t and

$$\frac{dw}{dt}(t) = \frac{\partial w}{\partial x} \frac{dx}{dt} + \frac{\partial w}{\partial y} \frac{dy}{dt}.$$
In the one variable case $z = f(y)$ and $y = g(x)$ then \(\frac{dz}{dx} = \frac{dz}{dy} \frac{dy}{dx} \).

When there are two independent variables, say $w = f(x, y)$ is differentiable and where both x and y are differentiable functions of the same variable t then w is a function of t.

The proof is not hard and given in the text.
In the one variable case $z = f(y)$ and $y = g(x)$ then $\frac{dz}{dx} = \frac{dz}{dy} \frac{dy}{dx}$.

When there are two independent variables, say $w = f(x, y)$ is differentiable and where both x and y are differentiable functions of the same variable t then w is a function of t. and

$$\frac{dw}{dt} = \frac{\partial w}{\partial x} \frac{dx}{dt} + \frac{\partial w}{\partial y} \frac{dy}{dt}.$$
In the one variable case \(z = f(y) \) and \(y = g(x) \) then \(\frac{dz}{dx} = \frac{dz}{dy} \frac{dy}{dx} \).

When there are two independent variables, say \(w = f(x, y) \) is differentiable and where both \(x \) and \(y \) are differentiable functions of the same variable \(t \) then \(w \) is a function of \(t \). and

\[
\frac{dw}{dt} = \frac{\partial w}{\partial x} \frac{dx}{dt} + \frac{\partial w}{\partial y} \frac{dy}{dt}.
\]

or in other words

\[
\frac{dw}{dt}(t) = w_x(x(t), y(t))x'(t) + w_y(x(t), y(t))y'(t).
\]
In the one variable case $z = f(y)$ and $y = g(x)$ then \(\frac{dz}{dx} = \frac{dz}{dy} \frac{dy}{dx} \).

When there are two independent variables, say $w = f(x, y)$ is differentiable and where both x and y are differentiable functions of the same variable t then w is a function of t. and

\[
\frac{dw}{dt} = \frac{\partial w}{\partial x} \frac{dx}{dt} + \frac{\partial w}{\partial y} \frac{dy}{dt}.
\]

or in other words

\[
\frac{dw}{dt}(t) = w_x(x(t), y(t))x'(t) + w_y(x(t), y(t))y'(t).
\]

The proof is not hard and given in the text.
In the one variable case $z = f(y)$ and $y = g(x)$ then $\frac{dz}{dx} = \frac{dz}{dy} \frac{dy}{dx}$.

When there are two independent variables, say $w = f(x, y)$ is differentiable and where both x and y are differentiable functions of the same variable t then w is a function of t. and

$$\frac{dw}{dt} = \frac{\partial w}{\partial x} \frac{dx}{dt} + \frac{\partial w}{\partial y} \frac{dy}{dt}.$$

or in other words

$$\frac{dw}{dt}(t) = w_x(x(t), y(t))x'(t) + w_y(x(t), y(t))y'(t).$$

The proof is not hard and given in the text.
Show tree diagram.
Problem: Compute $\frac{dw}{dt}$ two ways when $w = x^2 + xy$, $x = \cos(t)$, and $y = \sin(t)$.
Problem: Compute $\frac{dw}{dt}$ two ways when $w = x^2 + xy$, $x = \cos(t)$, and $y = \sin(t)$. What is $\frac{dw}{dt}(\frac{\pi}{2})$?
Problem: Compute $\frac{dw}{dt}$ two ways when $w = x^2 + xy$, $x = \cos(t)$, and $y = \sin(t)$.

What is $\frac{dw}{dt}(\frac{\pi}{2})$?

Do tree diagram for $w=f(x,y,z)$ where x,y,z are functions of t.
Problem: Compute \(\frac{dw}{dt} \) two ways when \(w = x^2 + xy, \ x = \cos(t), \) and \(y = \sin(t). \)

What is \(\frac{dw}{dt}(\pi/2) \)?

Do tree diagram for \(w = f(x,y,z) \) where \(x,y,z \) are functions of \(t. \)

What do you do if the intermediate variables are also functions of two variables? Say \(w = f(x,y,z) \) where each of \(x,y,z \) are functions of \(r \) and \(\theta. \) This makes \(w \) a function of \(r \) and \(\theta. \)
Problem: Compute \(\frac{dw}{dt} \) two ways when \(w = x^2 + xy \), \(x = \cos(t) \), and \(y = \sin(t) \).
What is \(\frac{dw}{dt}(\frac{\pi}{2}) \)?

Do tree diagram for \(w = f(x,y,z) \) where \(x, y, z \) are functions of \(t \).

What do you do if the intermediate variables are also functions of two variables? Say \(w = f(x, y, z) \) where each of \(x, y, z \) are functions of \(r \) and \(\theta \). This makes \(w \) a function of \(r \) and \(\theta \). For example compute \(\frac{\partial w}{\partial r} \).
Problem: Compute $\frac{dw}{dt}$ two ways when $w = x^2 + xy$, $x = \cos(t)$, and $y = \sin(t)$.
What is $\frac{dw}{dt}(\frac{\pi}{2})$?

Do tree diagram for $w = f(x,y,z)$ where x,y,z are functions of t.

What do you do if the intermediate variables are also functions of two variables? Say $w = f(x,y,z)$ where each of x,y,z are functions of r and θ. This makes w a function of r and θ. For example compute $\frac{\partial w}{\partial r}$.

Problem: Compute $\frac{\partial w}{\partial r}$ and $\frac{\partial w}{\partial s}$ in terms of r and s when $w = x + y - z^2$, $x = rs$, $y = r + s$, and $z = e^{rs}$.

Christopher Croke
Calculus 115
If $F(x, y) = 0$ defines y implicitly as a function of x, that is $y = h(x)$, and if F is differentiable then:

$$0 = \frac{dF}{dx} = F_x \cdot 1 + F_y \cdot \frac{dy}{dx}.$$
If $F(x, y) = 0$ defines y implicitly as a function of x, that is $y = h(x)$, and if F is differentiable then:

$$0 = \frac{dF}{dx} = F_x \cdot 1 + F_y \cdot \frac{dy}{dx}.$$

Thus

$$\frac{dy}{dx} = -\frac{F_x}{F_y}$$

whenever $F_y \neq 0$.

Problem: Find $\frac{dy}{dx}$ if $x^2 + y^2 x + \sin(y) = 0$.

Christopher Croke
Calculus 115
If $F(x, y) = 0$ defines y implicitly as a function of x, that is $y = h(x)$, and if F is differentiable then:

$$0 = \frac{dF}{dx} = F_x \cdot 1 + F_y \cdot \frac{dy}{dx}.$$

Thus

$$\frac{dy}{dx} = -\frac{F_x}{F_y}$$

whenever $F_y \neq 0$

Problem: Find $\frac{dy}{dx}$ if $x^2 + y^2x + \sin(y) = 0$.

Christopher Croke | Calculus 115
Given a function $f(x, y)$ then the rate of change (w.r.t. t) along a curve $(x(t), y(t))$ is (by the chain rule)

$$f_x \frac{dx}{dt} + f_y \frac{dy}{dt}.$$

Christopher Croke
Calculus 115
Directional Derivatives

Given a function $f(x, y)$ then the rate of change (w.r.t. t) along a curve $(x(t), y(t))$ is (by the chain rule)

$$f_x \frac{dx}{dt} + f_y \frac{dy}{dt}.$$

If \vec{u} is a unit vector we can write $\vec{u} = u_1 \vec{i} + u_2 \vec{j}$ (where $u_1^2 + u_2^2 = 1$).
Given a function $f(x, y)$ then the rate of change (w.r.t. t) along a curve $(x(t), y(t))$ is (by the chain rule)

$$f_x \frac{dx}{dt} + f_y \frac{dy}{dt}.$$

If \vec{u} is a unit vector we can write $\vec{u} = u_1 \vec{i} + u_2 \vec{j}$ (where $u_1^2 + u_2^2 = 1$). So the line through (x_0, y_0) in the direction \vec{u} with arc length parameter is $(x(s), y(s))$ where:

$$x(s) = u_1 s + x_0 \quad y(s) = u_2 s + y_0.$$
Directional Derivatives

Given a function \(f(x, y) \) then the rate of change (w.r.t. \(t \)) along a curve \((x(t), y(t)) \) is (by the chain rule)

\[
f_x \frac{dx}{dt} + f_y \frac{dy}{dt}.
\]

If \(\vec{u} \) is a unit vector we can write \(\vec{u} = u_1 \vec{i} + u_2 \vec{j} \) (where \(u_1^2 + u_2^2 = 1 \)). So the line through \((x_0, y_0)\) in the direction \(\vec{u} \) with arc length parameter is \((x(s), y(s))\) where:

\[
x(s) = u_1 s + x_0 \quad y(s) = u_2 s + y_0.
\]

The directional derivative in the direction \(\vec{u} \) is thus

\[
\left(\frac{df}{ds} \right)_{\vec{u}, (x_0, y_0)} = f_x(x_0, y_0)u_1 + f_y(x_0, y_0)u_2 \equiv (D_{\vec{u}} f)_{(x_0, y_0)}.
\]
Definition:

\[
(D_{\vec{u}} f)_{(x_0,y_0)} = \lim_{s \to 0} \frac{f(x_0 + u_1 s, y_0 + u_2 s) - f(x_0, y_0)}{s}.
\]
Definition:

\[
(D_{\vec{u}}f)_{(x_0, y_0)} = \lim_{s \to 0} \frac{f(x_0 + u_1 s, y_0 + u_2 s) - f(x_0, y_0)}{s}.
\]

What is geometric meaning?
Definition:

\[
(D_{\vec{u}}f)_{(x_0,y_0)} = \lim_{{s \to 0}} \frac{f(x_0 + u_1 s, y_0 + u_2 s) - f(x_0, y_0)}{s}.
\]

What is geometric meaning?

If you look at the formula you note that

\[
(D_{\vec{u}}f)_{(x_0,y_0)} = (f_x(x_0,y_0)\vec{i} + f_y(x_0,y_0)\vec{j}) \cdot \vec{u}
\]
Definition:

\[(D_\vec{u}f)_{(x_0, y_0)} = \lim_{s \to 0} \frac{f(x_0 + u_1 s, y_0 + u_2 s) - f(x_0, y_0)}{s}. \]

What is geometric meaning?

If you look at the formula you note that

\[(D_\vec{u}f)_{(x_0, y_0)} = (f_x(x_0, y_0)\vec{i} + f_y(x_0, y_0)\vec{j}) \cdot \vec{u} \]

We call the vector \(f_x(x_0, y_0)\vec{i} + f_y(x_0, y_0)\vec{j} \) the gradient of \(f \) at \((x_0, y_0)\) and we denote it \(\nabla f \).
Definition:

\[
(D\vec{u}f)_{(x_0, y_0)} = \lim_{s \to 0} \frac{f(x_0 + u_1 s, y_0 + u_2 s) - f(x_0, y_0)}{s}.
\]

What is geometric meaning?

If you look at the formula you note that

\[
(D\vec{u}f)_{(x_0, y_0)} = (f_x(x_0, y_0)\vec{i} + f_y(x_0, y_0)\vec{j}) \cdot \vec{u}
\]

We call the vector \(f_x(x_0, y_0)\vec{i} + f_y(x_0, y_0)\vec{j} \) the gradient of \(f \) at \((x_0, y_0)\) and we denote it \(\nabla f \).

So

\[
\nabla f = f_x\vec{i} + f_y\vec{j}.
\]
Definition:

\[
(D\vec{u}f)_{(x_0, y_0)} = \lim_{s \to 0} \frac{f(x_0 + u_1s, y_0 + u_2s) - f(x_0, y_0)}{s}.
\]

What is geometric meaning?

If you look at the formula you note that

\[
(D\vec{u}f)_{(x_0, y_0)} = (f_x(x_0, y_0)i + f_y(x_0, y_0)j) \cdot \vec{u}
\]

We call the vector \(f_x(x_0, y_0)i + f_y(x_0, y_0)j \) the gradient of \(f \) at \((x_0, y_0)\) and we denote it \(\nabla f \).

So

\[
\nabla f = f_x\vec{i} + f_y\vec{j}.
\]

and

\[
D\vec{u}f = \nabla f \cdot \vec{u}.
\]
Problem: Compute $D_{\vec{u}} f$ where $f(x, y) = e^{xy} + x^2$ at the point $(1, 0)$ in the direction $\vec{u} = \frac{2}{\sqrt{13}} \vec{i} - \frac{3}{\sqrt{13}} \vec{j}$.
Problem: Compute $D_{\vec{u}}f$ where $f(x, y) = e^{xy} + x^2$ at the point $(1, 0)$ in the direction $\vec{u} = \frac{2}{\sqrt{13}} \vec{i} - \frac{3}{\sqrt{13}} \vec{j}$.

If θ is the angle between ∇f and \vec{u} then

$$D_{\vec{u}}f = \nabla f \cdot \vec{u} = |\nabla f||\vec{u}| \cos(\theta) = |\nabla f| \cos(\theta).$$

This means that f increases most rapidly in the direction of ∇f.

(And least rapidly in the direction $-\nabla f$.)

Another conclusion is that if $\vec{u} \perp \nabla f$ then $D_{\vec{u}}f = 0$.

Christopher Croke
Calculus 115
Problem: Compute $D_{\vec{u}} f$ where $f(x, y) = e^{xy} + x^2$ at the point $(1, 0)$ in the direction $\vec{u} = \frac{2}{\sqrt{13}} \vec{i} - \frac{3}{\sqrt{13}} \vec{j}$.

If θ is the angle between ∇f and \vec{u} then

$$D_{\vec{u}} f = \nabla f \cdot \vec{u} = |\nabla f||\vec{u}| \cos(\theta) = |\nabla f| \cos(\theta).$$

This means that f increases most rapidly in the direction of ∇f.
Problem: Compute $D_{\vec{u}}f$ where $f(x, y) = e^{xy} + x^2$ at the point $(1, 0)$ in the direction $\vec{u} = \frac{2}{\sqrt{13}} \hat{i} - \frac{3}{\sqrt{13}} \hat{j}$.

If θ is the angle between ∇f and \vec{u} then

$$D_{\vec{u}}f = \nabla f \cdot \vec{u} = |\nabla f||\vec{u}| \cos(\theta) = |\nabla f| \cos(\theta).$$

This means that f increases most rapidly in the direction of ∇f. (And least rapidly in the direction $-\nabla f$.)
Problem: Compute $D_{\vec{u}}f$ where $f(x, y) = e^{xy} + x^2$ at the point $(1, 0)$ in the direction $\vec{u} = \frac{2}{\sqrt{13}}\vec{i} - \frac{3}{\sqrt{13}}\vec{j}$.

If θ is the angle between ∇f and \vec{u} then

$$D_{\vec{u}}f = \nabla f \cdot \vec{u} = |\nabla f||\vec{u}|\cos(\theta) = |\nabla f|\cos(\theta).$$

This means that f increases most rapidly in the direction of ∇f. (And least rapidly in the direction $-\nabla f$.) In this direction $D_{\vec{u}}f = |\nabla f|$ (or $-|\nabla f|$).
Problem: Compute $D_{\vec{u}} f$ where $f(x, y) = e^{xy} + x^2$ at the point $(1, 0)$ in the direction $\vec{u} = \frac{2}{\sqrt{13}} \vec{i} - \frac{3}{\sqrt{13}} \vec{j}$.

If θ is the angle between ∇f and \vec{u} then

$$D_{\vec{u}} f = \nabla f \cdot \vec{u} = |\nabla f| |\vec{u}| \cos(\theta) = |\nabla f| \cos(\theta).$$

This means that f increases most rapidly in the direction of ∇f. (And least rapidly in the direction $-\nabla f$.)

In this direction $D_{\vec{u}} f = |\nabla f|$ (or $-|\nabla f|$).

Another conclusion is that if $\vec{u} \perp \nabla f$ then $D_{\vec{u}} f = 0$.
Problem: Find the directions of most rapid increase and decrease at \((x, y) = (1, -1)\) of \(f(x, y) = x^2 - 2xy\). What are the directions of 0 change?
Problem: Find the directions of most rapid increase and decrease at \((x, y) = (1, -1)\) of \(f(x, y) = x^2 - 2xy\). What are the directions of 0 change?

Now \(f(x, y)\) does not change along the level curves \(c = f(x, y)\) for any constant \(c\). If we write the curve as \((x(t), y(t))\) and use the chain rule we see:

\[
\frac{d}{dt} f(x(t), y(t)) = f_x \cdot \frac{dx}{dt} + f_y \cdot \frac{dy}{dt} = 0.
\]
Problem: Find the directions of most rapid increase and decrease at \((x, y) = (1, -1)\) of \(f(x, y) = x^2 - 2xy\). What are the directions of 0 change?

Now \(f(x, y)\) does not change along the level curves \(c = f(x, y)\) for any constant \(c\). If we write the curve as \((x(t), y(t))\) and use the chain rule we see:

\[
\frac{d}{dt} f(x(t), y(t)) = f_x \cdot \frac{dx}{dt} + f_y \cdot \frac{dy}{dt} = 0.
\]

In other words:

\[
\nabla f \cdot \left(\frac{dx}{dt} \vec{i} + \frac{dy}{dt} \vec{j} \right) = 0.
\]
Problem: Find the directions of most rapid increase and decrease at \((x, y) = (1, -1)\) of \(f(x, y) = x^2 - 2xy\).

What are the directions of 0 change?

Now \(f(x, y)\) does not change along the level curves \(c = f(x, y)\) for any constant \(c\). If we write the curve as \((x(t), y(t))\) and use the chain rule we see:

\[
\frac{d}{dt} f(x(t), y(t)) = f_x \cdot \frac{dx}{dt} + f_y \cdot \frac{dy}{dt} = 0.
\]

In other words:

\[
\nabla f \cdot \left(\frac{dx}{dt} \hat{i} + \frac{dy}{dt} \hat{j} \right) = 0.
\]

Which says that \(\nabla f\) is perpendicular to the level curve.
Problem: Find the directions of most rapid increase and decrease at \((x, y) = (1, -1)\) of \(f(x, y) = x^2 - 2xy\). What are the directions of 0 change?

Now \(f(x, y)\) does not change along the level curves \(c = f(x, y)\) for any constant \(c\). If we write the curve as \((x(t), y(t))\) and use the chain rule we see:

\[
\frac{d}{dt} f(x(t), y(t)) = f_x \cdot \frac{dx}{dt} + f_y \cdot \frac{dy}{dt} = 0.
\]

In other words:

\[
\nabla f \cdot (\frac{dx}{dt} \vec{i} + \frac{dy}{dt} \vec{j}) = 0.
\]

Which says that \(\nabla f\) is perpendicular to the level curve. So the tangent line to the level curve is the line perpendicular to \(\nabla f\).
Problem: Find the directions of most rapid increase and decrease at \((x, y) = (1, -1)\) of \(f(x, y) = x^2 - 2xy\).
What are the directions of 0 change?

Now \(f(x, y)\) does not change along the level curves \(c = f(x, y)\) for any constant \(c\). If we write the curve as \((x(t), y(t))\) and use the chain rule we see:

\[
\frac{d}{dt} f(x(t), y(t)) = f_x \cdot \frac{dx}{dt} + f_y \cdot \frac{dy}{dt} = 0.
\]

In other words:

\[
\nabla f \cdot (\frac{dx}{dt} \vec{i} + \frac{dy}{dt} \vec{j}) = 0.
\]

Which says that \(\nabla f\) is perpendicular to the level curve. So the tangent line to the level curve is the line perpendicular to \(\nabla f\).

Problem: Find tangent line to the curve

\[x + \sin(y) + e^{xy} = 2\]

at the point \((1, 0)\).
Let's look at three independent variables, i.e. \(f(x, y, z) \). Then

\[
\nabla f = f_x \vec{i} + f_y \vec{j} + f_z \vec{k}.
\]

This means that \(\nabla f \) is perpendicular to the level surfaces of \(f \). (i.e. it is normal to all curves in the level surface.)
Three variables

Let's look at three independent variables, i.e. \(f(x, y, z) \). Then

\[
\nabla f = f_x \vec{i} + f_y \vec{j} + f_z \vec{k}.
\]

and

\[
D_{\vec{u}} f = \nabla f \cdot \vec{u} = |\nabla f| \cos(\theta).
\]

where \(\theta \) is the angle between \(\nabla f \) and \(\vec{u} \).
Three variables

Let's look at three independent variables, i.e. \(f(x, y, z) \). Then

\[
\nabla f = f_x \vec{i} + f_y \vec{j} + f_z \vec{k}.
\]

and

\[
D_{\vec{u}} f = \nabla f \cdot \vec{u} = \left| \nabla f \right| \cos(\theta).
\]

where \(\theta \) is the angle between \(\nabla f \) and \(\vec{u} \).

This means that \(\nabla f \) is perpendicular to the level surfaces of \(f \).
(i.e it is normal to all curves in the level surface.)
Let's look at three independent variables, i.e. $f(x, y, z)$. Then

$$\nabla f = f_x \vec{i} + f_y \vec{j} + f_z \vec{k}.$$

and

$$D_{\vec{u}}f = \nabla f \cdot \vec{u} = |\nabla f| \cos(\theta).$$

where θ is the angle between ∇f and \vec{u}.

This means that ∇f is perpendicular to the level surfaces of f. (i.e. it is normal to all curves in the level surface.)

The **Tangent Plane** at (x_0, y_0, z_0) to the level surface $f(x, y, z) = c$ is the plane through the point (x_0, y_0, z_0) normal to $\nabla f(x_0, y_0, z_0)$.
Three variables

Let's look at three independent variables, i.e. $f(x, y, z)$. Then

$$\nabla f = f_x \mathbf{i} + f_y \mathbf{j} + f_z \mathbf{k}.$$

and

$$D_{\mathbf{u}} f = \nabla f \cdot \mathbf{u} = |\nabla f| \cos(\theta).$$

where θ is the angle between ∇f and \mathbf{u}.

This means that ∇f is perpendicular to the level surfaces of f. (i.e. it is normal to all curves in the level surface.)

The **Tangent Plane** at (x_0, y_0, z_0) to the level surface $f(x, y, z) = c$ is the plane through the point (x_0, y_0, z_0) normal to $\nabla f(x_0, y_0, z_0)$.

Thus the equation is:

$$f_x(x - x_0) + f_y(y - y_0) + f_z(z - z_0) = 0.$$
The **Normal Line** of the surface at \((x_0, y_0, z_0)\) is the line through \((x_0, y_0, z_0)\) which is parallel to \(\nabla f\).
The **Normal Line** of the surface at \((x_0, y_0, z_0)\) is the line through \((x_0, y_0, z_0)\) which is parallel to \(\nabla f\).

\[
x = x_0 + f_x t, \quad y = y_0 + f_y t, \quad z = z_0 + f_z t.
\]
The **Normal Line** of the surface at \((x_0, y_0, z_0)\) is the line through \((x_0, y_0, z_0)\) which is parallel to \(\nabla f\).

\[
x = x_0 + f_x t, \quad y = y_0 + f_y t, \quad z = z_0 + f_z t.
\]

Problem: Find the tangent plane and normal line to the graph of \(z = f(x, y) = x^2 - 3xy\) at the point \((1, 2, -5)\).