Variance and Standard Deviation

Christopher Croke
University of Pennsylvania

Math 115
UPenn, Fall 2011

The first first important number describing a probability distribution is the mean or expected value $E(X)$.

The first first important number describing a probability distribution is the mean or expected value $E(X)$.
The next one is the variance $\operatorname{Var}(X)=\sigma^{2}(X)$. The square root of the variance σ is called the Standard Deviation.

Variance

The first first important number describing a probability distribution is the mean or expected value $E(X)$.
The next one is the variance $\operatorname{Var}(X)=\sigma^{2}(X)$. The square root of the variance σ is called the Standard Deviation.
If $f\left(x_{i}\right)$ is the probability distribution function for a random variable with range $\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}$ and mean $\mu=E(X)$ then:
$\operatorname{Var}(X)=\sigma^{2}=\left(x_{1}-\mu\right)^{2} f\left(x_{1}\right)+\left(x_{2}-\mu\right)^{2} f\left(x_{2}\right)+\left(x_{3}-\mu\right)^{2} f\left(x_{3}\right)+\ldots$
It is a description of how the distribution "spreads".

Variance

The first first important number describing a probability distribution is the mean or expected value $E(X)$.
The next one is the variance $\operatorname{Var}(X)=\sigma^{2}(X)$. The square root of the variance σ is called the Standard Deviation.
If $f\left(x_{i}\right)$ is the probability distribution function for a random variable with range $\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}$ and mean $\mu=E(X)$ then:
$\operatorname{Var}(X)=\sigma^{2}=\left(x_{1}-\mu\right)^{2} f\left(x_{1}\right)+\left(x_{2}-\mu\right)^{2} f\left(x_{2}\right)+\left(x_{3}-\mu\right)^{2} f\left(x_{3}\right)+\ldots$
It is a description of how the distribution "spreads".
Note $\operatorname{Var}(X)=E\left((X-\mu)^{2}\right)$.

Variance

The first first important number describing a probability distribution is the mean or expected value $E(X)$.
The next one is the variance $\operatorname{Var}(X)=\sigma^{2}(X)$. The square root of the variance σ is called the Standard Deviation.
If $f\left(x_{i}\right)$ is the probability distribution function for a random variable with range $\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}$ and mean $\mu=E(X)$ then:

$$
\operatorname{Var}(X)=\sigma^{2}=\left(x_{1}-\mu\right)^{2} f\left(x_{1}\right)+\left(x_{2}-\mu\right)^{2} f\left(x_{2}\right)+\left(x_{3}-\mu\right)^{2} f\left(x_{3}\right)+\ldots
$$

It is a description of how the distribution "spreads".
Note $\operatorname{Var}(X)=E\left((X-\mu)^{2}\right)$.
The standard deviation has the same units as X. (I.e. if X is measured in feet then so is σ.)

Problem: Remember the game where players pick balls from an urn with 4 white and 2 red balls. The first player is paid $\$ 2$ if he wins but the second player gets $\$ 3$ if she wins. No one gets payed if 4 white balls are chosen.

Problem: Remember the game where players pick balls from an urn with 4 white and 2 red balls. The first player is paid $\$ 2$ if he wins but the second player gets $\$ 3$ if she wins. No one gets payed if 4 white balls are chosen.
We have seen that the payout and probabilities for the first player are:
Payout Probability
$\begin{array}{ll}2 & \frac{8}{15} \\ 0 & \frac{1}{15} \\ -3 & \frac{6}{15}\end{array}$

Problem: Remember the game where players pick balls from an urn with 4 white and 2 red balls. The first player is paid $\$ 2$ if he wins but the second player gets $\$ 3$ if she wins. No one gets payed if 4 white balls are chosen.
We have seen that the payout and probabilities for the first player are:
Payout Probability
$\begin{array}{ll}2 & \frac{8}{15} \\ 0 & \frac{1}{15} \\ -3 & \frac{6}{15}\end{array}$
The expected value was $\mu=-\frac{2}{15}$.

Problem: Remember the game where players pick balls from an urn with 4 white and 2 red balls. The first player is paid $\$ 2$ if he wins but the second player gets $\$ 3$ if she wins. No one gets payed if 4 white balls are chosen.
We have seen that the payout and probabilities for the first player are:
Payout Probability
$\begin{array}{ll}2 & \frac{8}{15} \\ 0 & \frac{1}{15} \\ -3 & \frac{6}{15}\end{array}$
The expected value was $\mu=-\frac{2}{15}$. What is the variance?

Problem: Remember the game where players pick balls from an urn with 4 white and 2 red balls. The first player is paid $\$ 2$ if he wins but the second player gets $\$ 3$ if she wins. No one gets payed if 4 white balls are chosen.
We have seen that the payout and probabilities for the first player are:
Payout Probability
$\begin{array}{ll}2 & \frac{8}{15} \\ 0 & \frac{1}{15} \\ -3 & \frac{6}{15}\end{array}$
The expected value was $\mu=-\frac{2}{15}$. What is the variance?
Alternative formula for variance: $\sigma^{2}=E\left(X^{2}\right)-\mu^{2}$.

Problem: Remember the game where players pick balls from an urn with 4 white and 2 red balls. The first player is paid $\$ 2$ if he wins but the second player gets $\$ 3$ if she wins. No one gets payed if 4 white balls are chosen.
We have seen that the payout and probabilities for the first player are:
Payout Probability
$\begin{array}{ll}2 & \frac{8}{15} \\ 0 & \frac{1}{15} \\ -3 & \frac{6}{15}\end{array}$
The expected value was $\mu=-\frac{2}{15}$. What is the variance?
Alternative formula for variance: $\sigma^{2}=E\left(X^{2}\right)-\mu^{2}$. Why?

Problem: Remember the game where players pick balls from an urn with 4 white and 2 red balls. The first player is paid $\$ 2$ if he wins but the second player gets $\$ 3$ if she wins. No one gets payed if 4 white balls are chosen.
We have seen that the payout and probabilities for the first player are:
Payout Probability
$\begin{array}{ll}2 & \frac{8}{15} \\ 0 & \frac{1}{15} \\ -3 & \frac{6}{15}\end{array}$
The expected value was $\mu=-\frac{2}{15}$. What is the variance?
Alternative formula for variance: $\sigma^{2}=E\left(X^{2}\right)-\mu^{2}$. Why?
$E\left((X-\mu)^{2}\right)=E\left(X^{2}-2 \mu X+\mu^{2}\right)$

Problem: Remember the game where players pick balls from an urn with 4 white and 2 red balls. The first player is paid $\$ 2$ if he wins but the second player gets $\$ 3$ if she wins. No one gets payed if 4 white balls are chosen.
We have seen that the payout and probabilities for the first player are:
Payout Probability
$\begin{array}{ll}2 & \frac{8}{15} \\ 0 & \frac{1}{15} \\ -3 & \frac{6}{15}\end{array}$
The expected value was $\mu=-\frac{2}{15}$. What is the variance?
Alternative formula for variance: $\sigma^{2}=E\left(X^{2}\right)-\mu^{2}$. Why?
$E\left((X-\mu)^{2}\right)=E\left(X^{2}-2 \mu X+\mu^{2}\right)=E\left(X^{2}\right)+E(-2 \mu X)+E\left(\mu^{2}\right)$

Problem: Remember the game where players pick balls from an urn with 4 white and 2 red balls. The first player is paid $\$ 2$ if he wins but the second player gets $\$ 3$ if she wins. No one gets payed if 4 white balls are chosen.
We have seen that the payout and probabilities for the first player are:
Payout Probability
$\begin{array}{ll}2 & \frac{8}{15} \\ 0 & \frac{1}{15} \\ -3 & \frac{6}{15}\end{array}$
The expected value was $\mu=-\frac{2}{15}$. What is the variance?
Alternative formula for variance: $\sigma^{2}=E\left(X^{2}\right)-\mu^{2}$. Why?

$$
\begin{aligned}
& E\left((X-\mu)^{2}\right)=E\left(X^{2}-2 \mu X+\mu^{2}\right)=E\left(X^{2}\right)+E(-2 \mu X)+E\left(\mu^{2}\right) \\
& \quad=E\left(X^{2}\right)-2 \mu E(X)+\mu^{2}=E\left(X^{2}\right)-2 \mu^{2}+\mu^{2}=E\left(X^{2}\right)-\mu^{2}
\end{aligned}
$$

This often makes it easier to compute since we can compute μ and $E\left(X^{2}\right)$ at the same time.

This often makes it easier to compute since we can compute μ and $E\left(X^{2}\right)$ at the same time.
Problem: Compute $E(X)$ and $\operatorname{Var}(X)$ where X is a random variable with probability given by the chart below:
$X \quad \operatorname{Pr}(X=x)$
$1 \quad 0.1$
20.2
30.3
40.3
50.1

This often makes it easier to compute since we can compute μ and $E\left(X^{2}\right)$ at the same time.
Problem: Compute $E(X)$ and $\operatorname{Var}(X)$ where X is a random variable with probability given by the chart below:
$X \quad \operatorname{Pr}(X=x)$
10.1
20.2
30.3
40.3
50.1

We will see later that for X a binomial random variable $\sigma^{2}=n p q$.

This often makes it easier to compute since we can compute μ and $E\left(X^{2}\right)$ at the same time.
Problem: Compute $E(X)$ and $\operatorname{Var}(X)$ where X is a random variable with probability given by the chart below:
$X \quad \operatorname{Pr}(X=x)$
$1 \quad 0.1$
20.2
$3 \quad 0.3$
40.3
50.1

We will see later that for X a binomial random variable $\sigma^{2}=n p q$.
Problem: What is the variance of the number of hits for our batter that bats .300 and comes to the plate 4 times?

For continuous random variable X with probability density function $f(x)$ defined on $[A, B]$ we saw:

$$
E(X)=\int_{A}^{B} x f(x) d x
$$

For continuous random variable X with probability density function $f(x)$ defined on $[A, B]$ we saw:

$$
E(X)=\int_{A}^{B} x f(x) d x
$$

(note that this does not always exist if $B=\infty$.)

For continuous random variable X with probability density function $f(x)$ defined on $[A, B]$ we saw:

$$
E(X)=\int_{A}^{B} x f(x) d x
$$

(note that this does not always exist if $B=\infty$.)
The variance will be:

$$
\sigma^{2}(X)=\operatorname{Var}(X)=E\left((X-E(X))^{2}\right)=\int_{A}^{B}(x-E(X))^{2} f(x) d x
$$

For continuous random variable X with probability density function $f(x)$ defined on $[A, B]$ we saw:

$$
E(X)=\int_{A}^{B} x f(x) d x
$$

(note that this does not always exist if $B=\infty$.)
The variance will be:

$$
\sigma^{2}(X)=\operatorname{Var}(X)=E\left((X-E(X))^{2}\right)=\int_{A}^{B}(x-E(X))^{2} f(x) d x
$$

Problem:(uniform probability on an interval) Let X be the random variable you get when you randomly choose a point in $[0, B]$.
a) find the probability density function f.
b) find the cumulative distribution function $F(x)$.
c) find $E(X)$ and $\operatorname{Var}(X)=\sigma^{2}$.

Problem Consider the problem of the age of a cell in a culture. We had the probability density function was $f(x)=2 k e^{-k x}$ on $[0, T]$ where $k=\frac{\ln (2)}{T}$.
a) Find $E(X)$.

Problem Consider the problem of the age of a cell in a culture. We had the probability density function was $f(x)=2 k e^{-k x}$ on $[0, T]$ where $k=\frac{\ln (2)}{T}$.
a) Find $E(X)$.
b) Find σ^{2}.

It is easier in this case to use the alternative definition of σ^{2} :

$$
\sigma^{2}=E\left(X^{2}\right)-E(X)^{2}=\int_{A}^{B} x^{2} f(x) d x-E(X)^{2}
$$

This holds for the same reason as in the discrete case.

Problem Consider the problem of the age of a cell in a culture. We had the probability density function was $f(x)=2 k e^{-k x}$ on $[0, T]$ where $k=\frac{\ln (2)}{T}$.
a) Find $E(X)$.
b) Find σ^{2}.

It is easier in this case to use the alternative definition of σ^{2} :

$$
\sigma^{2}=E\left(X^{2}\right)-E(X)^{2}=\int_{A}^{B} x^{2} f(x) d x-E(X)^{2}
$$

This holds for the same reason as in the discrete case.
Problem: Consider our random variable X which is the sum of the coordinates of a point chosen randomly from $[0 ; 1] \times[0 ; 1]$? What is $\operatorname{Var}(X)$?

Bivariate Distributions

This is the joint probability when you are given two random variables X and Y.

Bivariate Distributions

This is the joint probability when you are given two random variables X and Y.
Consider the case when both are discrete random variables. Then the joint probability function $f(x, y)$ is the function:

$$
f\left(x_{i}, y_{j}\right)=\operatorname{Pr}\left(X=x_{i}, Y=y_{j}\right)
$$

Bivariate Distributions

This is the joint probability when you are given two random variables X and Y.
Consider the case when both are discrete random variables. Then the joint probability function $f(x, y)$ is the function:

$$
f\left(x_{i}, y_{j}\right)=\operatorname{Pr}\left(X=x_{i}, Y=y_{j}\right)
$$

So of course $f\left(x_{i}, y_{j}\right) \geq 0$ and the sum over all pairs $\left(x_{i}, y_{j}\right)$ of $f\left(x_{i}, y_{j}\right)$ is 1 .

Bivariate Distributions

This is the joint probability when you are given two random variables X and Y.
Consider the case when both are discrete random variables. Then the joint probability function $f(x, y)$ is the function:

$$
f\left(x_{i}, y_{j}\right)=\operatorname{Pr}\left(X=x_{i}, Y=y_{j}\right)
$$

So of course $f\left(x_{i}, y_{j}\right) \geq 0$ and the sum over all pairs $\left(x_{i}, y_{j}\right)$ of $f\left(x_{i}, y_{j}\right)$ is 1 . Often it is given in the form of a table.

$X \downarrow Y \rightarrow$	1	2	3
0	0.1	0	0.2
2	0.1	0.4	0
4	0.1	0	0.1

Bivariate Distributions

This is the joint probability when you are given two random variables X and Y.
Consider the case when both are discrete random variables. Then the joint probability function $f(x, y)$ is the function:

$$
f\left(x_{i}, y_{j}\right)=\operatorname{Pr}\left(X=x_{i}, Y=y_{j}\right)
$$

So of course $f\left(x_{i}, y_{j}\right) \geq 0$ and the sum over all pairs $\left(x_{i}, y_{j}\right)$ of $f\left(x_{i}, y_{j}\right)$ is 1 . Often it is given in the form of a table.

$X \downarrow Y \rightarrow$	1	2	3
0	0.1	0	0.2
2	0.1	0.4	0
4	0.1	0	0.1

Bivariate Distributions

This is the joint probability when you are given two random variables X and Y.
Consider the case when both are discrete random variables. Then the joint probability function $f(x, y)$ is the function:

$$
f\left(x_{i}, y_{j}\right)=\operatorname{Pr}\left(X=x_{i}, Y=y_{j}\right)
$$

So of course $f\left(x_{i}, y_{j}\right) \geq 0$ and the sum over all pairs $\left(x_{i}, y_{j}\right)$ of $f\left(x_{i}, y_{j}\right)$ is 1 . Often it is given in the form of a table.

$X \downarrow Y \rightarrow$	1	2	3
0	0.1	0	0.2
2	0.1	0.4	0
4	0.1	0	0.1

Bivariate Distributions

This is the joint probability when you are given two random variables X and Y.
Consider the case when both are discrete random variables. Then the joint probability function $f(x, y)$ is the function:

$$
f\left(x_{i}, y_{j}\right)=\operatorname{Pr}\left(X=x_{i}, Y=y_{j}\right)
$$

So of course $f\left(x_{i}, y_{j}\right) \geq 0$ and the sum over all pairs $\left(x_{i}, y_{j}\right)$ of $f\left(x_{i}, y_{j}\right)$ is 1 . Often it is given in the form of a table.

$X \downarrow Y \rightarrow$	1	2	3
0	0.1	0	0.2
2	0.1	0.4	0
4	0.1	0	0.1
$\operatorname{Pr}(X \geq 3, Y \geq 2) ?$	$\operatorname{Pr}(X=2) ?$		

Bivariate Distributions

If X and Y are continuous random variables then the joint probability density function is a function $f(x, y)$ of two real variables such that for any domain A in the plane:

$$
\operatorname{Pr}((X, Y) \in A)=\iint_{A} f(x, y) d x d y
$$

Bivariate Distributions

If X and Y are continuous random variables then the joint probability density function is a function $f(x, y)$ of two real variables such that for any domain A in the plane:

$$
\operatorname{Pr}((X, Y) \in A)=\iint_{A} f(x, y) d x d y
$$

We want $f(x, y) \geq 0$ and $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) d x d y=1$.

Bivariate Distributions

If X and Y are continuous random variables then the joint probability density function is a function $f(x, y)$ of two real variables such that for any domain A in the plane:

$$
\operatorname{Pr}((X, Y) \in A)=\iint_{A} f(x, y) d x d y
$$

We want $f(x, y) \geq 0$ and $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) d x d y=1$.
Problem: Let f be a joint probability density function (j.p.d.f.) for X and Y where

$$
f(x, y)= \begin{cases}c(x+y) & \text { if } x \geq 0, y \geq 0, y \leq 1-x \\ 0 & \text { othewise }\end{cases}
$$

a) What is c ?

Bivariate Distributions

If X and Y are continuous random variables then the joint probability density function is a function $f(x, y)$ of two real variables such that for any domain A in the plane:

$$
\operatorname{Pr}((X, Y) \in A)=\iint_{A} f(x, y) d x d y
$$

We want $f(x, y) \geq 0$ and $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) d x d y=1$.
Problem: Let f be a joint probability density function (j.p.d.f.) for X and Y where

$$
f(x, y)= \begin{cases}c(x+y) & \text { if } x \geq 0, y \geq 0, y \leq 1-x \\ 0 & \text { othewise }\end{cases}
$$

a) What is c ?
b) Find $\operatorname{Pr}\left(X \leq \frac{1}{2}\right)$.

Bivariate Distributions

If X and Y are continuous random variables then the joint probability density function is a function $f(x, y)$ of two real variables such that for any domain A in the plane:

$$
\operatorname{Pr}((X, Y) \in A)=\iint_{A} f(x, y) d x d y
$$

We want $f(x, y) \geq 0$ and $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) d x d y=1$.
Problem: Let f be a joint probability density function (j.p.d.f.) for X and Y where

$$
f(x, y)= \begin{cases}c(x+y) & \text { if } x \geq 0, y \geq 0, y \leq 1-x \\ 0 & \text { othewise }\end{cases}
$$

a) What is c ?
b) Find $\operatorname{Pr}\left(X \leq \frac{1}{2}\right)$.
c) Set up integral for $\operatorname{Pr}(Y \leq X)$.

Bivariate Distributions

In some cases X might be discrete and Y continuous (or vice versa).

Bivariate Distributions

In some cases X might be discrete and Y continuous (or vice versa).
In this case we would want $\int_{-\infty}^{\infty} \Sigma_{x_{i}} f\left(x_{i}, y\right) d y=1$.

Bivariate Distributions

In some cases X might be discrete and Y continuous (or vice versa).
In this case we would want $\int_{-\infty}^{\infty} \Sigma_{x_{i}} f\left(x_{i}, y\right) d y=1$.
The (cumulative) joint distribution function for continuous random variables X and Y is

$$
F(x, y)=\operatorname{Pr}(X \leq x, Y \leq y)=\int_{-\infty}^{x} \int_{-\infty}^{y} f(s, t) d t d s
$$

Bivariate Distributions

In some cases X might be discrete and Y continuous (or vice versa).
In this case we would want $\int_{-\infty}^{\infty} \Sigma_{x_{i}} f\left(x_{i}, y\right) d y=1$.
The (cumulative) joint distribution function for continuous random variables X and Y is

$$
F(x, y)=\operatorname{Pr}(X \leq x, Y \leq y)=\int_{-\infty}^{x} \int_{-\infty}^{y} f(s, t) d t d s
$$

(Use sums if discrete.)

Bivariate Distributions

In some cases X might be discrete and Y continuous (or vice versa).
In this case we would want $\int_{-\infty}^{\infty} \Sigma_{x_{i}} f\left(x_{i}, y\right) d y=1$.
The (cumulative) joint distribution function for continuous random variables X and Y is

$$
F(x, y)=\operatorname{Pr}(X \leq x, Y \leq y)=\int_{-\infty}^{x} \int_{-\infty}^{y} f(s, t) d t d s
$$

(Use sums if discrete.)
Thus we see that if F is differentiable

$$
f(x, y)=\frac{\partial^{2} F}{\partial x \partial y}
$$

Bivariate Distributions

What is the probability in a rectangle? I.e.

$$
\operatorname{Pr}(a \leq X \leq b, c \leq Y \leq d) ?
$$

Bivariate Distributions

What is the probability in a rectangle? I.e.

$$
\operatorname{Pr}(a \leq X \leq b, c \leq Y \leq d) ?
$$

$F(b, d)-F(a, d)-F(b, c)+F(a, c)$.

Bivariate Distributions

What is the probability in a rectangle? I.e.

$$
\operatorname{Pr}(a \leq X \leq b, c \leq Y \leq d) ?
$$

$F(b, d)-F(a, d)-F(b, c)+F(a, c)$.
Given $F(x, y)$ a c.j.d.f. for X and Y we can find the two c.d.f.'s by:

$$
F_{1}(x)=\operatorname{Pr}(X \leq x)
$$

Bivariate Distributions

What is the probability in a rectangle? I.e.

$$
\operatorname{Pr}(a \leq X \leq b, c \leq Y \leq d) ?
$$

$F(b, d)-F(a, d)-F(b, c)+F(a, c)$.
Given $F(x, y)$ a c.j.d.f. for X and Y we can find the two c.d.f.'s by:

$$
F_{1}(x)=\operatorname{Pr}(X \leq x)=\lim _{y \rightarrow \infty} \operatorname{Pr}(X \leq x, Y \leq y)
$$

Bivariate Distributions

What is the probability in a rectangle? I.e.

$$
\operatorname{Pr}(a \leq X \leq b, c \leq Y \leq d) ?
$$

$F(b, d)-F(a, d)-F(b, c)+F(a, c)$.
Given $F(x, y)$ a c.j.d.f. for X and Y we can find the two c.d.f.'s by:

$$
F_{1}(x)=\operatorname{Pr}(X \leq x)=\lim _{y \rightarrow \infty} \operatorname{Pr}(X \leq x, Y \leq y)=\lim _{y \rightarrow \infty} F(x, y)
$$

Bivariate Distributions

What is the probability in a rectangle? I.e.

$$
\operatorname{Pr}(a \leq X \leq b, c \leq Y \leq d) ?
$$

$F(b, d)-F(a, d)-F(b, c)+F(a, c)$.
Given $F(x, y)$ a c.j.d.f. for X and Y we can find the two c.d.f.'s by:

$$
F_{1}(x)=\operatorname{Pr}(X \leq x)=\lim _{y \rightarrow \infty} \operatorname{Pr}(X \leq x, Y \leq y)=\lim _{y \rightarrow \infty} F(x, y)
$$

Similarly

$$
F_{2}(y)=\lim _{x \rightarrow \infty} F(x, y)
$$

