Math 114 Assignment 13, Fall 2015

Due in class on Friday, December 4.
Part 1. Do and write up the following problems.

1. [240s10] Math 240 Final exam, May 4, 2010, problem 13.
2. [240s10] Math 240 Final exam, May 4, 2010, problem 14.
3. [240f08] Math 240 Final Exam, December 17, 2008, problem 6.
4. [240f08] Math 240 Final Exam, December 17, 2008, problem 7.
5. [240f09] Math 240 Final Exam, Dec 21, 2009, problem 9.
6. [240f09] Math 240 Final Exam, Dec 21, 2009, problem 10.
7. [240f09] Math 240 Final Exam, Dec 21, 2009, problem 11.
8. [240f04] Math 240 Final Exam, Fall 2004, problem 8.
9. [240f04] Math 240 Final Exam, Fall 2004, problem 9.

Part 2. A few more problems for you to practice. (They are not part of this assignment.) A. Let C be the boundary of the square

$$
Q:=\{(x, y) \mid-1 \leq x, y \leq 1\}
$$

on the plane, oriented counterclockwise. Compute the line integral

$$
\oint_{C}\left(y^{2}+\cos \left(x^{2}\right)\right) d x+\left(x+\sin \left(y^{2}\right)\right) d y
$$

B. Compute the oriented surface integral

$$
\iint_{S}(\nabla \times \vec{F}) \cdot \vec{N} d \sigma
$$

where

$$
\vec{F}(x, y, z)=(y+x) \vec{i}+(y-x) \vec{k}+\sin (x y z) \vec{k},
$$

and S is the surface

$$
S=\left\{(x, y, z) \mid z=x^{2}+y^{2}-9, z \leq 0\right\}
$$

oriented by the continuous unit normal vector field \vec{N} on S such that $\vec{n}(0,0,-9)=-\vec{k}$.
C. Let $\vec{F}(x, y)=x y \vec{i}+x e^{-y \cos z \vec{j}}+\frac{e^{x}-e^{-x}}{2 x} y z \vec{k}$. Compute the triple integral

$$
\iiint_{V} \operatorname{div}(\operatorname{curl}(\vec{F})) d x d y d z
$$

where V is the unit sphere $\left\{x^{2}+y^{2}+z^{2} \leq 1\right\}$.
D. For what values of the parameter λ is

$$
\vec{F}(x, y)=-6 x \sin y \vec{i}+\left(\lambda^{2}-4\right) x^{2} \cos y \vec{j}
$$

a conservative vector field? For such values of λ, compute the line integral

$$
\oint_{C} \vec{F} \cdot d \vec{r},
$$

where C is the straight line segment from $(1,0)$ to $(0,1)$.
E. Let C be the rectangle whose vertices are $(-2,-3),(2,-3),(2,3)$ and $(-2,3)$, oriented counterclockwise. Compute the line integral

$$
\oint_{C} x^{2} y d x+y^{3} x^{3} d y
$$

F. Let $\vec{F}=\vec{F}(x, y, z)$ be a smooth vector field defined on $V=\left\{1 \leq x^{2}+y^{2}+z^{2} \leq 100\right\}$. Let $\vec{N}(x, y, z)=$ $\frac{x \vec{i}+y \vec{j}+\vec{z} \vec{k}}{\sqrt{x^{2}+y^{2}+z^{2}}}$. Which ones among the following statements are true?
(I) If $\vec{F}=\operatorname{curl}(G)$ for a smooth vector field G defined on V, then $\operatorname{div}(\vec{F})=0$.
(II) If $\operatorname{div}(\vec{F})=0$, then there exists a smooth vector field G such that $\vec{F}=\operatorname{curl}(G)$.
(III) If $\operatorname{div}(\vec{F})=0$, then

$$
\iint_{\left\{x^{2}+y^{2}+z^{2}=100\right\}} \vec{F} \cdot \vec{N} d \sigma=0 .
$$

(IV) If $\operatorname{div}(\vec{F})=0$, then

$$
\iint_{\left\{x^{2}+y^{2}+z^{2}=100\right\}} \vec{F} \cdot \vec{N} d \sigma=\iint_{\left\{x^{2}+y^{2}+z^{2}=1\right\}} \vec{F} \cdot \vec{N} d \sigma
$$

(V) If $\vec{F}=\operatorname{curl}(G)$ for a smooth vector field G, then

$$
\iint_{\left\{x^{2}+y^{2}+z^{2}=100\right\}} \vec{F} \cdot \vec{N} d \sigma=0 .
$$

