Math 114 Assignment 9, Fall 2015

Due in class on Friday, November 6.

Orientation of curve and surfaces is an important part of oriented surface integrals. This is also a part which get in the way when people try to understand Stokes' theorem. We explained orientation in class in the week before the second midterm. You can also consult $\S 2$ of notes posted on the math 114 page. The problems below are exercises in $\S 2$ of the notes, so that you can practice with the concept of orientation in a setting separate from Stokes' and the divergence theorems.

Part 1. Read $\S 2$ of the notes, on orientation of curves and surfaces. Read also the explanation of orientation of a surface on page 1016 of Thomas and compare with the definition given in class and in the notes.

Part 2.

1. Let D be the solid

$$
D:=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x, y, z \geq 0,0 \leq x+y+z \leq 3\right\}
$$

The boundary ∂D of D is a closed surface, and is a union of 4 triangles. Let \vec{N} be the unit normal vector field on ∂D pointing away from D.
(a) Give an explicit formula for the normal vector field \vec{N}.
(b) Let $S:=\{(x, y, z) \in \partial D \mid x+y+z \geq 1\}$. The restriction of \vec{N} to S is an orientation of S, which induces an orientation on the boundary ∂S of S. Describe explicitly the closed curve ∂S and the orientation of ∂S induced by the orientation \vec{N} of S.
[Note that ∂S is a triangle.]
2. Let C be the boundary of the surface

$$
S=\left\{(x, 0, z) \mid 1 \leq x^{2}+4 z^{2} \leq 4\right\}
$$

on the (x, z)-plane. Note that C is a disjoint union of two ellipses on the (x, z)-plane. Orient S by the normal vector field \vec{j}. The orientation \vec{N} of S defines an unit tangenet vector field \vec{T}, which gives C an orientation. Find $\vec{T}(1,0,0)$ and $\vec{T}(0,0,1)$.
3. Let S be the surface

$$
S:=\left\{(x, y, z) \in \mathbb{R}^{3} \left\lvert\, x^{2}+\frac{y^{2}}{4}+\frac{z^{2}}{9}=36\right., x-y-z+10 \geq 0\right\}
$$

Let \vec{N} be the continuous unit normal vector field on S such that $\vec{N}(6,0,0)=\vec{i}$. Let $C:=\partial S$ be the boundary of S, and let \vec{T} be the unit tangent vector field on C giving C the orientation induced by (S, \vec{N}). Compute $\vec{T}(4,8,6)$.
(Note that $(6,0,0)$ is a point of the surface S and $(4,8,6)$ is a point of the curve C.)
4. Let S be the surface

$$
S:=\left\{\left(y^{2}+y z+z^{2}, y, z\right) \in \mathbb{R}^{3} \mid-10 \leq y, z \leq 10,(y-2)^{2}+z^{2} \geq 1, y^{2}+(z-2)^{2} \geq 1\right\} .
$$

You can think of S as the graph of the function

$$
(y, z) \mapsto y^{2}+y z+z^{2}
$$

on the region of the (y, z)-plane consisting of all point lying inside a square edge length 20 and outside two circles of radius 1 . Let \vec{N} be the continuous unit vector field on S such that $\vec{N}(0,0,0)=-\vec{i}$. The boundary ∂S is the union of three piecewise smooth closed curves. Let \vec{T} be the unit tangent vector field on the smooth locus of ∂S giving the orientation of ∂ induced by the oriented surface (S, \vec{N}). Compute $\vec{T}(100,10,0), \vec{T}(9,3,0)$ and $\vec{T}(9,0,3)$.
(The three points $(100,10,0),(9,3,0)$ and $(9,0,3)$ lie on the three connected components of ∂S respectively.)

Part 3. Extra credit problems.

E1. Let D be the solid in \mathbb{R}^{3} obtained by rotation the disk

$$
\left\{(x, z) \mid(x-5)^{2}+z^{2} \leq 4\right\}
$$

in the (x, z)-plane about the z-axis. Let ∂D be the boundary of D, which is a torus, oriented by the unit normal vector field \vec{N} on ∂D pointing away from D.
(a) Let ∂D_{-}be the lower-half of ∂D, consisting of those points of ∂D whose z-coordinates are non-positive. Describe the projection of ∂D_{-}to the (x, y)-plane explicitly. (This is a region R in the (x, y)-plane.)
(b) The surface ∂D_{-}is the graph of a function $f: R \rightarrow \mathbb{R}$. Find this function f and write down the corresponding parametrization $\vec{r}=x \vec{i}+y \vec{j}+f \vec{k}$ of ∂D_{-}.
(c) Determine the sign function $\left(\partial D_{-}, \vec{N}, \vec{r}\right)$ of for the parametrization \vec{r} in (b) of the oriented surface $\left(\partial D_{-}, \vec{N}\right)$.

E2. Let D be the solid in \mathbb{R}^{3} obtained by rotation the disk

$$
\left\{(x, z) \mid(x-5)^{2}+z^{2} \leq 4\right\}
$$

in the (x, z)-plane about the z-axis. Let ∂D be the boundary of D, which is a torus, oriented by the unit normal vector field \vec{N} on ∂D pointing away from D. Let S be the surface

$$
\{(x, y, z) \in \partial D \mid 0 \leq x \leq 6\} .
$$

Let \vec{T} be the unit tangent vector field on the boundary ∂S of S induced by the oriented surface (S, \vec{N}). Note that ∂S is a disjoint union of two circles C_{1}, C_{2} of radius 2 on the (y, z)-plane and a closed curve C_{3} on the plane $\{x=6\}$.
(a) Describe the two cicles C_{1}, C_{2} and the unit tangent vector field \vec{T} on them explicitly.
(b) Find $\vec{T}(6,0, \sqrt{3})$.

