
NOTES ON VECTOR CALCULUS
We will concentrate on the fundamental theorem of calculus for curves, surfaces and solids in R3.
These are equalities of signed integrals, of the formˆ

∂M
α =

ˆ
M

dα ,

where M is an oriented n-dimensional geometric body, and α is an “integrand” for dimension n− 1,
∂M is the boundary of M, and dα is a signed derivative of α suitable for integration in dimension n. It
is important that the dimensions match for both sides of the above equality:

• ∂M is the boundary of M, so the dimension of ∂M is n−1,

• α is an integrand for dimension n−1, and the signed derivative d is defined so that the dimension
of dα is 1 more than the dimension of α .

• On the left-hand-side of the equality the dimensions of ∂M and α are both n−1. On the right-
hand-side of the equality, the dimesions of M and dα are both n.

Signed integrals are designed so that nice cancellations happen when one performs integration by
parts. The fundamental theorem of calculus is essentially integration by parts in higher dimensions, it
holds because of these cancellations.

Cancellation also happens for the signed derivatives, so that if one takes the signed derivatives
twice consecutively one gets 0; see 1.2 for details.

Since M is contained in R3, we have n = 0,1,2 or 3. The case when n = 2 is called Gauss’ (or
divergence) theorem. The case when n = 1 is called Stokes’ theorem. If n = 1 and M is contained in
R2, then Stokes’ theorem specializes to Green’s theorem.

§1. Signed integrands and their derivatives
(1.1) In the traditional notation used in standard textbooks in engineering mathematics, integrands in
dimensions 0 and 3 are invariably expressed in terms of scalar valued functions f (x,y,z). For instance
triple integrals for domains D in R3 look like˚

D
f (x,y,z)dxdydz.

In contrast, integrands in dimensions 1 are 2 come in two flavors: those with signs and those without
signs. The signed integrals are expressed via vector valued functions, or vector fields

~F(x,y,z) = f1(x,y,z)~i+ f2(x,y,z)~j+ f3(x,y,z)~k

with three components. The signed integrands in dimension 1 have the form

~F ·~T ds = ~F ·d~x ,

while the signed integrands in dimension 2 have the form

~F ·~N dσ = ~F ·d~S.

In the two displayed formulae above, the left hand side is the notation used in the textbook by Thomas,
while the right hand side is the notation used in many other books; the two notation systems are equally
popular.
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REMARK (a) The standard one-dimensional integral

ˆ b

a
f (x)dx

is a signed integral:
´ b

a f (x)dx =
´ a

b f (x)dx

(b) There is an alternative system of notation, which generalizes to higher dimensions. Unfor-
tunately this superior approach to the fundamental theorem of calculus has not been widely adopted
by scientists and engineers (yet), so we will not use it in class. In this system an one-dimensional
integrand for a vector field ~F = f1~i+ f2~j+ f3~k is written as

f1 dx+ f2 dy+ f3 dz ,

while the two-dimensional integrand corresponding to ~F is written as

f1 dy∧dz+ f2 dz∧dx+ f3 dx∧dy .

You might wonder what these strange creatures dy∧dz, dz∧dx and dx∧dy are. They are analogues of
the “dx” in a typical integral

´ b
a g(x)dx or the “dxdy” in a typical double integral

´
D h(x,y)dxdy; the

symbol ∧ emphasizes that the corresponding integrals are signed.

(1.2) Identities for signed derivatives

(1.2.1) The derivative involved in the fundamental theorem of calculus, from an n-dimensional inte-
grand to an n+1-dimensional integrand, is given in the following table. These derivatives are defined
so that

d(dα) = 0

for all α . For integrands of dimensions 0,1,2 in R3, the signed derivatives correspond to the three
operators gradient, curl and divergence respectively.

n α 7→ dα d(dα) = 0
0 f 7→ grad( f )
1 ~F 7→ curl(~F) curl(grad( f )) =~0
2 ~G 7→ div(~G) div(curl(~F)) = 0

Integrands for dimension 4 or above on R3 are trivial–they are all 0. So we don’t have other signed
derivatives on R3 other than gradient, curl and divergence. For the same reason, curl(grad( f )) =~0 and
div(curl(~F)) = 0 are the only two cases of the general identity d(dα) = 0 for R3.

REMARK For spaces of dimension 4 or above, the signed integrands have more components. For
instance on R5, integrands for dimensions 2 and 3 have 10 components, integrands for dimensions 1
and 4 have 5 components, while integrands for dimensions 0 and 5 have just 1 component. Thus the
signed derivative for 2-dimensional integrands will send a vector field with 5 components to a vector
field with 10 components, while the signed derivative for 3-dimensional integrands will send a vector
field with 10 components to a vector field with 10 components.
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(1.2.2) Poincaré’s Lemma
If an integrand α in dimension n≥ 1 satisfies dα = 0, it is not necessarily true that there existgs an

integrand β in dimension n−1 such that dβ =α . However a local form holds: if dα = 0 then for every
point where α is smooth, there exists an (n−1)-dimensional integrand β ia an open neighborhood of
this point such that α = dβ in this neighborhood.

• (n=1) Suppose that ~F is a smooth vector field on an open subset U of R3 such that curl(~F) = 0,
then for every point P of U , there exists an open neighborhood V of P and a smooth function f
on V such that grad( f ) = ~F on V .

• (n=2) Suppose that ~G is a smooth vector field on an open subset U of R3 such that div(~G) = 0,
then for every point P of U , there exists an open neighborhood V of P and a smooth vector field
G on V such that curl(F) = ~G on V

§2. Orientation of curves and surfaces in R3

(2.1) How to orient a curve
An orientation of a smooth curve C is (determined by) a continuous unit tangent vector field, i.e.

a tangent vector field on C with lenght 1 at every point of C. Note that every connected smooth curve
C has exactly 2 orientations.

(2.1.1) The sign of a parametrization of an oriented curve
Let ~r : [a,b]→C be a parametrization of (a piece of) an oriented curve (C,~T ). The sign of such

an parametrization is the function defined by

sign(C,~T ,~r)(t) =


1 if ∂~r

∂ t (t) is a positive multiple of ~T (t)
0 if ∂~r

∂ t (t) =~0
−1 if ∂~r

∂ t (t) is a positive multiple of ~T (t)
(1)

If sign(C,~T ,~r) = 1 throughout the interval [a,b], we say that that parametrization ~r is compatible with
the orientation of C.

(2.1.2) REMARK Usually the derivative ∂~r
∂ t (t) 6=~0 for all t ∈ [a,b]; if this is the case then sign(C,~T ,~r)

is a constant function on the interval [a,b], equal to either 1 or −1.

(2.2) Orientation of surfaces in R3

An orientation of a surface S in R3 is given by a continuous normal vector field ~N of unit length
on S. Put it in another way, you assign an orientation to a surface S by picking a “preferred side” of
the surface in a continuous fashion (if that is possible).1 If S is connected and there is an orientation of
S, then there are exactly two orientations.

(2.2.1) (a) In practice all you need to do is to pick a vector field on S which is not tangent to S at every
point of S: you can subtract suitable tangent components to produce a vector field on S with is non-zero
and normal to S at every point of S, then scale this normal vector field to produce a unit normal vector
field.

1Continuity means that you are not allowed to abruptly change the preferred side. Some surfaces, such as the Möbius
band, are one-sided and not orientable.
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(b) If the surface S is parametrized by a smooth vector-valued function ~r : D→ R3 on a region
D⊂ R2 such that ∂~r

∂u and ∂~r
∂v are not parallel at every point of D, then the two unit normal vector fields

on S are

±
∂~r
∂u ×

∂~r
∂v∣∣∣∣∣∣ ∂~r

∂u ×
∂~r
∂v

∣∣∣∣∣∣
(2.2.2) An alternative way to think of orientation of surfaces

Given an orientation ~N of a surface S in R3, one can decide for any ordered pair (~v,~w) of vectors
on the tangent plane E to S at a point~a ∈ S is compatible with the given orientation:

(~v,~w) is compatible with the orientation given by the unit vector field N on S if~v×~w is a
positive multiple of the vector ~N(a).

Note that if (~v,~w) is incompatible with the given orientation, then (~w,~v) is. If S is parametrized
by a vector-valued function ~r : D→ S on a connected region D in the (u,v) plane, we say that this
parametrization~r is compatible with the orientation if the ordered pair

(
∂~r
∂u(u,v),

∂~r
∂v(u,v)

)
is compat-

ible with ~N for every point of S.

REMARK (a) When defining oriented surface integrals for an oriented surface, one uses parametriza-
tions which are compatible with the given orientation S. (If you happened to have picked a parametriza-
tion which is incompatible with the orientation, you need to compensate by changing the sign.)

(b) We just saw that an orientation of surface S in R3 specifies among local coordinate systems of S
s subfamily consisting of local coordinate systems which are compatible with the given orientation.
This latter notion gives an alternative, and in many aspects more intrinsic description of the idea of
orientation, because it generalizes to “higher dimensional surfaces”.

(2.2.3) The sign of a parametrization of an oriented surface
Given an orientation ~N of a surface S in R3, for any parametrization~r of S, we can define a function

sign(S,~N,~r) whose values are ±1, given by

sign(S,~N,~r)(u,v) := sign
(

det
(
~N(~r(u,v)),

∂~r
∂u

(u,v),
∂~r
∂v

(u,v)
))

(2)

In other words it is the sign of the determinant of the 3×3 matrix whose three columns are the vector-
valued functions ~N, ∂~r/∂u and ∂~r/∂v on D; it is equal to ±1 if the domain of definition D⊂R2 of the
function~r(u,v) is connected. In other words, sign(S,~N,~r) = 1 if ~N is a positive multiple of ∂~r

∂u ×
∂~r
∂v ,

while sign(S,~N,~r) =−1 if ~N is a negative multiple of ∂~r
∂u ×

∂~r
∂v . In the terminology of 2.2.2,

sign(S,~N,~r)(u,v) =

 1 if
(

∂~r
∂u(u,v),

∂~r
∂v(u,v)

)
is compatible with the orientation ~N(u,v)

−1 if
(

∂~r
∂u(u,v),

∂~r
∂v(u,v)

)
is incompatible with the orientation ~N(u,v)

This function sign(S,~N,~r)(u,v) on S is a constant, equal to either 1 or−1, if the surface S is connected.

(2.3) How to orient the boundary of a solid in R3

Suppose that B is a domain in R3 with a smooth boundary ∂B.2 Note that S may have several
components. For instance if B :=

{
(x,y,z) ∈ R3|1≤ x2 + y2 + z2 ≤ 4

}
, then its boundary ∂B consists

of two spheres, of radii 2 and 1 respectively.
2Here ∂B is the standard notation for “the boundary of B”.
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There is a standard convention for orienting the boundary surface ∂B of a 3-dimensional domain
B⊂ R3.

Choose the unit normal vector field ~N on ∂B which points away from B at every point of
the boundary surface ∂B.

The above way of orienting ∂B is important for the divergence theorem (also known as Gauss’ theo-
rem).

In the example B :=
{
(x,y,z) ∈ R3|1≤ x2 + y2 + z2 ≤ 4

}
, ∂B = S1 ∪ S2, where S1 is a sphere of

radius 1 and S2 is a sphere of radius 2. The unit normal vector field ~N is

~N(~r) =
{
−~r if ~r ∈ S1
1
2~r if ~r ∈ S2

(2.4) How to compatibly orient a surface S with boundary and it boundary ∂S
Suppose that S is smooth surface with boundary in R3, oriented by a continuous unit normal vector

field ~N. The boundary of S is a smooth curve ∂B, which may have a number of connected components.
We want to define an orientation on the boundary curve ∂S, which is uniquely determined by the
orientation ~N of S. In other words we want to specify a vector field ~T on ∂S, which is tangent to the
curve ∂S and has lengh 1 at every point of ∂S. In fact we will produce two unit vector fields,~ν and ~T ,
on the boundary curve ∂S.

(2.4.1) Definitions of vector fields~ν and ~T on ∂S

(a) We have a vector field ~ν on ∂S, uniquely determined by the following conditions. This vector
field~ν is completely determined by the geometry of the surface S; the orientation ~N of S is not
involved in defining~ν .

– ||~ν(P) ||= 1 for every P ∈ ∂S;

– ~ν(P) is tangent to the surface S at P, i.e. ~ν(P) ·~N(P) = 0, for every point P ∈ ∂S;

– ~ν(P) is orthogonal to the tangent line of the curve ∂S at P, for every P ∈ ∂S;

– ~ν(P) points away from S at every point P ∈ ∂S.

(b) The vector field ~T on ∂S is the unique tangent vector field of unit length on ∂S such that

det(~N(P),~ν(P),~T (P))> 0 for every point P ∈ ∂S .

REMARK (a) Because the three unit vectors ~N(P), ~ν(P) and ~T (P) are orthogonal to each other, this
condition is equivalent to each of the following statements.

• det(~N(P),~ν(P),~T (P)) = 1 for every point P ∈ ∂S

• ~T (P) = ~N(P)×~ν(P) for every point P ∈ ∂S

• ~N(P) =~ν(P)×~T (P) for every point P ∈ ∂S

• ~ν(N) = ~T (P)×~N(P) for every point P ∈ ∂S
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Many people use the expression “~N(P), ~ν(P),~T (P) form a right-handed system” when any (hence
each) of the above conditions holds. This is a common terminology which has nothing to do with
people’s hands.3

(b) To summarize: the geometry of the surface S and its boundary curve ∂S uniquely determines the
unit vector field ν on ∂S, which is tangent to S, orthogonal to ∂S, and points away from ∂S at every
point of S. The orientation ~N of S determines, with the help of ~ν , the orientation ~T of the boundary
curve ∂S.

REMARK (Generalization to higher dimensions) Given an n-dimensional oriented geometric body
M, whose boundary ∂M is a gemetric body of dimension n−1. Is there a way to give ∂M an orienta-
tion? Not surprisingly the answer is “yes”. The idea is explained in the next paragraph.

We have a vector field ~ν on the boundary ∂M which is tangent to M, normal to ∂M and pointing
away from M, just as in the case of surfaces. The orientation on ∂M is specified so that the pair
(~ν ,orientation of ∂M) is compatible with the orientation of M, in the following sense: for every point
P of ∂M, there is a local coordinate system x0,x1, . . . ,xn−1 for M near P such that

• the boundary ∂M is given by {x0 = 0} near P,

• x1, . . . ,xn−1 is a local coordinate system near P compatible with the orientation of ∂M, and

• x0,x1, . . . ,xn−1 is a local coordinate system near P compatible with the orientation of M.

(2.4.2) Here is an intuitive way to think about the orientation of the boundary curve ∂S induced by the
orientation of the surface. Imagine that a tiny tiny creature stands on the preferred side of the surface S
as given by the orientation ~N, at a place of S pretty close to the boundary curve ∂S. Because the sense
of scale of this creature is much smaller than ours, in its eyes the surface S looks completely flat and the
boundary curve looks like a straight line. Suppose we want this creature to move forward along ∂S in
the direction of the unit tangent vector field ~T on the curve ∂S, but this poor thing doesn’t understand
complicated concepts such as “the orientation of the boundary curve defined by the orientation of the
surface”. What should we say in the marching order?

Answer. Tell it to move forward on the surface S, keeping the boundary ∂S in sight, to its right.

(2.4.3) Boundary of a bounded region in the plane. A simple example is the case when the surface
S lies on the (x,y)-plane, oriented by the constant normal vector field~k. The boundary ∂S is the disjoint
union of a simple closed curve C0, together with a finite number of simple closed curves C1, . . . ,Cm

lying in the domain enclosed by C0. In this case, the orientation of ∂S induced by (S,~k) is usually
described as follows: C0 is oriented counterclockwise, while C1, . . . ,Cm are oriented clockwise.

(2.4.4) Example. Let D be a two-dimension region

D :=
{
(x,y) ∈ R2 |(x−2)2 + y2 ≥ 1, (x+2)2 + y2 ≥ 1, 9x2 +16y2 ≤ 144

}
.

The boundary ∂D of D is the disjoint union of two circles C,C′ of radius 1 centered at (2,0) and
(−2,0) respectively, and the ellipse

E := {9x2 +16y2 = 144}.
3Some books may say something like “vectors~u,~v,~w form a right-handed system if when you extend your right hand and

make the three larger fingers orthogonal to each other, you can match ~u with the index finger,~v with the middle and ~w with
the thumb”, plus a picture showing a right hand with the three fingers marked by~u,~v and ~w. But you can illustrate it equally
well with your left hand: match~u with the middle finger,~v with the index finger and w with the thumb.
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The standard convention is that a planar region in the (x,y)-plane is oriented by the constant vector
field~k. The orientation of ∂D determined by the unit normal vector field~k is the following:

• The outer part E of the boundary curve ∂D, which contains D in its interior, is oriented counter-
clockwise.

• The circles C and C′, which are contained in the interior of the ellipse E, are oriented clockwise.

(2.4.5) Example. Let T be the torus in R3 obtained by rotating the circle

C1 = {(x,0,z) ∈ R3 : (x−2)2 + z2 = 1}

on the (x,z)-plane about the z-axis. Let vector~n be the vector field on C1 such that

~n(x,0,z) = (x−2)~i+ z~k for all (x,0,z) ∈C1 .

Let S be the subset of T consisting of all point (x,y,z) ∈ T with x,y ≥ 0. Let ~N be the normal vector
field on S obtained from ~n by rotating the latter vector field on C1 about the z-axis. The boundary of
the oriented surface (S,~N) is the disjoint union of two circles, the circle C1 on the (x,z)-plane and the
circle

C2 = {(0,y,z) ∈ R3 : (y−2)2 + z2 = 1}
on the (y,z)-plane.

We want to pin down the orientation on ∂S = C1∪C2. One can achieve this by giving the values
of unit tangent vectors~t along tangent direction/orientation of ∂S at two points of ∂S, one in each
component. We take the two points to be P1 = (3,0,0) ∈C1 and P2 = (0,3,0) ∈C2 respectively. The
values of ~N,~ν and~t at P1 and P2 are worked out below.

• At P1 we have ~N(P1) =~i,~ν(P1) =−~j. so ~T (P1) =−~k.

• At P2 we have ~N(P2) = ~j,~ν(P2) =−~i, so ~T (P2) =~k.

(2.5) Exercises.

(2.5.1) Let D be the solid

D := {(x,y,z) ∈ R3 |x,y,z≥ 0, 0≤ x+ y+ z≤ 3}

The boundary ∂D of D is a closed surface, and is a union of 4 triangles. Let ~N be the unit normal
vector field on ∂D pointing away from D.

(a) Give an explicit formula for the normal vector field ~N.

(b) Let S := {(x,y,z) ∈ ∂D |x+ y+ z ≥ 1}. The restriction of ~N to S is an orientation of S, which
induces an orientation on the boundary ∂S of S. Describe explicitly the closed curve ∂S and the
orientation of ∂S induced by the orientation ~N of S.

[Note that ∂S is a triangle.]

(2.5.2) Let C be the boundary of the surface

S = {(x,0,z) |1≤ x2 +4z2 ≤ 4}

on the (x,z)-plane. Note that C is a disjoint union of two ellipses on the (x,z)-plane. Orient S by the
normal vector field ~j. The orientation ~N of S defines an unit tangenet vector field ~T , which gives C an
orientation. Find ~T (1,0,0) and ~T (0,0,1).
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(2.5.3) Let S be the surface

S :=
{
(x,y,z) ∈ R3

∣∣∣∣x2 +
y2

4
+

z2

9
= 36, x− y− z+10≥ 0

}
Let ~N be the continuous unit normal vector field on S such that ~N(6,0,0) =~i. Let C := ∂S be the
boundary of S, and let ~T be the unit tangent vector field on C giving C the orientation induced by
(S,~N). Compute ~T (4,8,6).
(Note that (6,0,0) is a point of the surface S and (4,8,6) is a point of the curve C.)

(2.5.4) Let S be the surface

S :=
{
(y2 + yz+ z2,y,z) ∈ R3 ∣∣−10≤ y,z≤ 10, (y−2)2 + z2 ≥ 1, y2 +(z−2)2 ≥ 0

}
.

You can think of S as the graph of the function

(y,z) 7→ y2 + yz+ z2

on the region of the (y,z)-plane consisting of all point lying inside a square edge length 20 and outside
two circles of radius 1. Let ~N be the continuous unit vector field on S such that ~N(0,0,0) = −~i. The
boundary ∂S is the union of three piecewise smooth closed curves. Let ~T be the unit tangent vector
field on the smooth locus of ∂S giving the orientation of ∂ induced by the oriented surface (S,~N).
Compute ~T (100,10,0), ~T (9,3,0) and ~T (9,0,3).
(The three points (100,10,0),(9,3,0) and (9,0,3) lie on the three connected components of ∂S re-
spectively.)

(2.5.5) Let D be the solid in R3 obtained by rotation the disk

{(x,z) |(x−5)2 + z2 ≤ 4}

in the (x,z)-plane about the z-axis. Let ∂D be the boundary of D, which is a torus, oriented by the unit
normal vector field ~N on ∂D pointing away from D.

(a) Let ∂D− be the lower-half of ∂D, consisting of those points of ∂D whose z-coordinates are
non-positive. Describe the projection of ∂D− to the (x,y)-plane explicitly. (This is a region R in
the (x,y)-plane.)

(b) The surface ∂D− is the graph of a function f : R→ R. Find this function f and write down the
corresponding parametrization~r = x~i+ y~j+ f~k of ∂D−.

(c) Determine the sign function (∂D−,~N,~r) of for the parametrization~r in (b) of the oriented surface
(∂D−,~N).

(2.5.6) Let D be the solid in R3 obtained by rotation the disk

{(x,z) |(x−5)2 + z2 ≤ 4}

in the (x,z)-plane about the z-axis. Let ∂D be the boundary of D, which is a torus, oriented by the unit
normal vector field ~N on ∂D pointing away from D. Let S be the surface

{(x,y,z) ∈ ∂D |0≤ x≤ 6}.

Let ~T be the unit tangent vector field on the boundary ∂S of S induced by the oriented surface (S,~N).
Note that ∂S is a disjoint union of two circles C1,C2 of radius 2 on the (y,z)-plane and a closed curve
C3 on the plane {x = 6}.
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(a) Describe the two cicles C1,C2 and the unit tangent vector field ~T on them explicitly.

(b) Find ~T (6,0,
√

3).

§3. Signed integrals
(3.1) Signed integrals in dimensions n = 0,3 are easy to understand.

(a) n = 0. A 0-dimensional geometric body with signs has the form ∑
a
i=0 mi · [Pi] , where each mi is

an integer, and each Pi is a point in R3. For a function f (x,y,z),
ˆ

∑i mi·[Pi]
f := ∑

i
mi · f (Pi).

(b) n = 3. The convention is that we use the “standard orientation” for R3, and so for a solid
B in R3 we just have the usual triple integral

˝
B f dxdydz. The sign (or orientation) of R3

is concealed—you don’t see it in the notation because we have adopted the standard signed
convention and assumed that everyone follows it.

(3.2) Line integrals: one-dimensional signed integrals
A 1-dimensional geometric body C with signs is a formal sum, of the form C = ∑

a
j=1 m j · (C j,~Tj),

where each mi is an integer and each (C j,~Tj is an oriented curve. The integral over M of a one-
dimensional integrand ~F = f1~i+ f2~j+ f3~k has several equivalent notations,

ˆ
C

~F ·~T ds =
ˆ

C

~F ·d~x =
ˆ

C
f1 dx+ f2 dy+ f3 dz.

The definition/meaning of the above line integral is as follows. If~r j(t) : [a j,b j]→R3 is a parametriza-
tion of the curve underlying a connected smooth oriented curve C j ⊂ R3 for each j = 1, . . . ,a, then

ˆ
C j

~F ·d~x = sign(C j,~Tj,~r j) ·
b jˆ

a j

(
3

∑
i=1

fi(r1(t),r2(t),r3(t)) ·
dri(t)

dt

)
dt ,

where sign(C j,~Tj,~r j) is 1 or −1 depending on whether the parametrization~r j is compatible with the
orientation of Ci or not. [An oriented curve is a curve plus an assigned orientation.]

REMARK (a) If you use the notation ~F ·d~x or f1 dx+ f2 dy+ f3 dz, you simply substitute dx by dx
dt dt,

dy by dy
dt dt and dz by dz

dt dt for each component C j of C using the parametrization~r j(t) of C j. Do not
forget to examine whether the orientation of C j is compatible with the parametrization~r j and figure
out the sign sign(C j,~r j). Equivalently, make the following substitution

~Tj ds sign(C j,~Tj,~r j) ·
d~r j

dt
dt

when you compute the oriented integral
´

C j
~F ·~Tj ds using a parametrization~r j(t) of C j.

(b) If you use the notation ~F ·~T ds, please keep in mind that there is no need to compute ~T or ds. It is a
waste of time if you do that. Just remember that ~T ds is a shorthand for d~x, and perform the substitution
as in (a).

9



(3.3) Oriented surface integrals
A two-dimensional geometric body with signs is a formal sum of the form

S =
s

∑
j=1

m j · (S j,~N j) ,

where each (S j,~N j) is an oriented surface and each m j is an integer. A general oriented surface integral
of a vector field ~F over ∑

s
j=1 m j · (S j,~N j) has the form
¨

∑
s
j=1 m j·(S j,~N j)

~F ·~N dσ =
s

∑
j=1

m j

¨
S j

~F ·~N j dσ .

The meaning of the terms
˜

S j,~N j
~F ·~N j dσ is defined below.

(3.3.1) Definitioin. The integral ¨
S

~F ·~N dσ

for a vector field ~F with components f1, f2, f3 over a smooth oriented surface (S,~N), when S is
parametrized by a bounded region D⊂ R2 through a smooth function

~r : D→ R3, ~r(u,v) = x(u,v)~i+ y(u,v)~j+ r3(u,v)~k, (u,v) ∈ D

is defined to be

¨
S

~F ·~N dσ := sign(S,~N,~r) ·

ˆ̂
D

det

 f1(~r(u,v)) ∂x(u,v)/∂u ∂x(u,v)/∂v
f2(~r(u,v)) ∂y(u,v)/∂u ∂y(u,v)/∂v
f3(~r(u,v)) ∂ z(u,v)/∂u ∂ z(u,v)/∂v

 dudv (3)

where sign(S,~N,~r) is the sign of the parametrization~r of the oriented surface (S,~N), defined in 2.2.3.

(3.3.2) REMARK This definition and the change of variable formula guarantees that the integral is
independent of the choice of parametrization. In general an oriented surface (S,~N) can be decomposed
into a finite union of pieces, each of which admits a parametrization.

(3.3.3) Substitution rule for ~N dσ in oriented surface integrals
The 3×3 determinant in equation (3) is equal to

~F(~r(u,v)) ·
(

∂~r
∂u
× ∂~r

∂v

)
You get the whole integrand

sign(S,~N,~r) ·det

 f1(~r(u,v)) ∂x(u,v)/∂u ∂x(u,v)/∂v
f2(~r(u,v)) ∂y(u,v)/∂u ∂y(u,v)/∂v
f3(~r(u,v)) ∂ z(u,v)/∂u ∂ z(u,v)/∂v

 dudv

from ~F ·~N dσ if you make the following subsitution

~N dσ sign(S,~N,~r) ·
(

∂~r
∂u
× ∂~r

∂v

)
dudv

in equation (3).
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(3.3.4) Another notation for oriented surface integrals
There is another notation for the oriented surface integral of a vector field ~F with components f1, f2, f3,
over an oriented surface (S,~N), the right hand side of the following equality

¨
S

~F ·N dσ =:
¨

(S,~N)
f1 dy∧dz+ f2 dz∧dx+ f3 dx∧dy

Often (S,~N) is abbreviated as S, with the symbol S denoting an oriented surface. The symbol “∧” is
suppressed in many books when it is understood that the integral is an oriented one. The substitute
rules when given a parametrization ~r(u,v) with component functions x(u,v),y(u,v),z(u,v) are

dy∧dz sign(S,~N,~r) ·det
[

∂y(u,v)/∂u ∂y(u,v)/∂v
∂ z(u,v)/∂u ∂ z(u,v)/∂v

]
dudv

dz∧dx sign(S,~N,~r) ·det
[

∂ z(u,v)/∂u ∂ z(u,v)/∂v
∂x(u,v)/∂u ∂x(u,v)/∂v

]
dudv

and

dx∧dy sign(S,~N,~r) ·det
[

∂x(u,v)/∂u ∂x(u,v)/∂v
∂y(u,v)/∂u ∂y(u,v)/∂v

]
dudv

Of course the whole effect is the cofactor expansion the 3× 3 determinant in equation (3) along the
first column of the same 3×3 matrix.

(3.3.5) Example. Suppose that S is the square {(x,−1,z) : −1 ≤ x,z ≤ 1} on the plane {y = −1} ,
oriented by the unit normal vector field ~N =−~j. We can choose

D = {(u,v) ∈ R2|−1≤ u,v≤ 1}, ~r(u,v) = (v,−1,u) .

Then ∂ r/∂u =~k, ∂ r/∂v =~i, sign(~N,~r) =−1, and the oriented surface integral
˜

S
~F ·~N dσ becomes

−
¨
−1≤u,v≤1

f2(v,−1,u) dudv =−
¨
−1≤x,z≤1

f2(x,−1,z) dzdx .

§4. The fundamental theorem of calculus
(4.1) The fundamental theorem of calculus in higher dimensions has the general form

ˆ
∂M

α =

ˆ
M

dα ,

where

• α is a n-dimensional integrand, usually specified by a number of scalar-valued funtions, and

• M is an n+1-dimensional priented geometric body M with signs specializes to various forms in
different dimensions.

We will explain the cases when M ⊂ R3 and n = 0,1 or 2. The case n = 0 is not too different from the
usual fundamental theorem of calculus, while the restriction M ⊂ R3 makes the case n = 2 easier to
explain. The case when n = 1 is the Stokes’ theorem, and needs to make the orientations for M and its
boundary ∂M compatible so that the equality holds.
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(4.2) The Cases when n = 0 and n = 2

A. n = 0. This is the fundamental theorem of calculus for line integrals of conservative vector
fields:

For any smooth function f defined on an open subset of R3 containing the given oriented curve
C, we have ˆ

∂C
f =
ˆ

C
grad( f ) ·d~x .

The boundary ∂C of C is empty if C is a closed curve, in which case the above equality reduces
to
¸

C grad( f ) · d~x = 0. If C is connected and goes from P to Q according to its orientation, the
∂C = [Q]− [P].

B. n = 2 (Gauss/divergence theorem): For any bounded solid B in R3, orient its boundary ∂B by
the unit normal vector field ~N on ∂B which points away from B. Notice that the boundary ∂B of
B may not be connected. On each connected component of ∂B we have a orientation given by
this recipe. pointing away from B.

With this choice of orientation of the boundary ∂B and for every vector field ~F smooth on B, we
have ¨

∂B

~F ·~N dσ =

˚
B

div(F) dxdydz .

Consequence: Suppose that a closed oriented surface (S1, ~N1) can be smoothly deformed to a
closed oriented surface (S2,~N2) so that (S1,~N1)∪ (S2,−~N2) is the boundary of solid B ⊂ R3.
Suppose that ~F is smooth on B (i.e. the deformation from S1 to S2 through the solid B does not
meet any singularity of ~F), then¨

S1

~F ·~N1 dσ =

¨
S2

~F ·~N2 dσ if div(~F) = 0.

This statement includes the extreme case when S2 is empty and (S1,~N1) is the oriented boundary
of B: ¨

S

~F ·~N dσ = 0 if div(~F) = 0, S = ∂B and ~F is smooth on B.

(4.3) Stokes’ theorem: the case when n = 1

(4.3.1) The set-up is as follows. We are given an oriented surface (S,~N) in R3, which may or may not
be closed.4 We orient the boundary curve ∂S of S by the unit tangent vector field ~T on ∂S as in 2.4.
Stokes’ theorem asserts that ˆ

∂S

~F ·~T ds =
¨

S
curl(F) ·~N dσ

holds for every vector field ~F smooth on an open subset of R3 containing S, i.e. none of the component
functions fi of ~F has any singularity. on the surface S. When S is a closed surface, its boundary ∂S is
empty, and Stokes’ theorem simply says that‹

S
curl(F) ·~N dσ = 0

for closed surfaces.
4The boundary ∂S of S is empty if S is a closed surface, but in general ∂S may consists of several connected closed curves

in R3.
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We repeat an important point: the line integral on the left hand side of the above formula is com-
puted according to the orientation of the boundary ∂S given by the unit tangent vector field ~T on
∂S determined by the orientation ~N of S. The surface integral and the line integral in the statement
of Stokes’ theorem are both signed integrals. The signs produces necessary cancellations so that the
theorem holds.

(4.3.2) Applications of Stokes’ theorem.
(a) Suppose that S1 and S2 are two smooth surfaces in R3 oriented by unit normal vector fields N1 and
N2 respectively. Let ~F be a smooth vector field on an open subset of R3 which contains both S1 and
S2. Suppose moreover that ∂S1 = ∂S2 as oriented closed curves. If there exists a smooth vector field
~G such that ~F = curl(~G), then ¨

S1

~F ·~N1 dσ =

¨
S1

~F ·~N1 dσ

REMARK This is a generalization of the statement that the line integrals of a conservative vector field
is independent of path.

(b) Suppose that an oriented curve C1 is deformed to an oriented curve C2 in such a way that C1−C2
is the oriented boundary of an oriented surface (S,~N) in R3. Suppose moreover that curl(~F) = 0 and
~F is smooth on S; in other words the deformation of C1 to C2 through the surface S does not meet any
singular point of ~F . Then ˆ

C1

~F ·d~x =
ˆ

C2

~F ·d~x ,

under the assumptions that (i) curl(~F) = 0 and (ii) C1−C2 is the oriented boundary of a smooth surface
S such that ~F is smooth on S (i.e. no singularity of ~F lies on S).

REMARK (1) This statement includes the extreme case when C2 = /0 and C1 = ∂S.
(2) Note that it is not assumed that there exists a smooth function f such that grad( f ) = ~F .

§5. Line and surface integrals without signs
There is not much to say about line integrals and surface integrals without signs. The fundamental
theorem of calculus holds only for signed integrals; this is already the case for integrals in one variable.
We will recall their definitions below. You can still use the fundamental theorem of calculus, but
you need to convert an integral without signs to a signed one before applying that theorem. These
integrals can be evaluated using any parametrization, so choose a good parametrization when you do
the computation.

(5.1) Unsigned line integrals
Let C be a curve parametrized by a smooth function ~r : I→ R3 on a finite interval I ⊂ R, and let

f (x,y,z) be a continuous function on C. The unsigned line integral isˆ
C

f (x,y,z)ds :=
ˆ

I
f (~r(t))

∣∣∣∣∣∣∣∣d~rdt

∣∣∣∣∣∣∣∣ dt.

In other words, substitute the line element ds for the curve C by∣∣∣∣∣∣∣∣d~rdt

∣∣∣∣∣∣∣∣ dt

when you use a parametrization~r(t) to evaluate an unsigned line integral
´

C f (x,y,z)ds.
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(5.2) Unsigned surface integrals
Suppose that S is a smooth surface in R3 parametrized by a smooth function ~r : D→ R3 on a

bounded region D⊂ R2. Let f be a continuous function on S. The unsigned surface integral is
¨

S
f (x,y,z)dσ :=

¨
D

f (~r(u,v))
∣∣∣∣∣∣∣∣ ∂~r∂u

× ∂~r
∂v

∣∣∣∣∣∣∣∣ dudv

In other words, substitute the area element dσ by∣∣∣∣∣∣∣∣ ∂~r∂u
× ∂~r

∂v

∣∣∣∣∣∣∣∣ dudv

you use a parametrization~r(u,v) to evaluate an unsigned surface integral
˜

S f (x,y,z)dσ .
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