1. (a) Find all solutions of the system of equations

$$
\left[\begin{array}{llll}
1 & 0 & 1 & 2 \\
2 & 1 & 3 & 2 \\
1 & 0 & 0 & 1 \\
2 & 1 & 2 & 1
\end{array}\right] \cdot\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{l}
5 \\
8 \\
3 \\
6
\end{array}\right]
$$

such that $x_{3} \cdot x_{4}=0$.
(b) Compute the determinant of the square matrix in (a) above.
2. Six of the following 7 elements of \mathbb{R}^{3},

$$
(1,1,-4),(3,5,-26),(2,1,1),(5,6,-27),(4,1,5),(5,-2,29),(6,2,4)
$$

lie on a 2-dimensional subspace (i.e. a plane passing through the origin). Which one does not lie on the plane that contains the other six points?
3. Compute the determinants of the following matrices:
(a)

(b) $\left(\begin{array}{cccccc}2 & -1 & & & & \\ -1 & 2 & -1 & & & \\ & -1 & 2 & -1 & & \\ & & -1 & 2 & -1 & \\ & & & -1 & 2 & -1 \\ & & & & -1 & 2\end{array}\right)$
4. Let B be the square matrix

$$
\left[\begin{array}{ccc}
2 & 0 & 1 \\
-2 & 3 & 4 \\
-5 & 5 & 6
\end{array}\right]
$$

Then the trace of B^{-1} is equal to
A. 21
B. 13
C. -15
D. 0
E. -14
F. None of the above.
5. Consider the following system of linear equations in 6 variables

$$
\left[\begin{array}{cccccc}
0 & 0 & 1 & 3 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & -2 \\
1 & -1 & 0 & 0 & 0 & 2
\end{array}\right] \cdot\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

(a) What is the rank of the above 3×6 matrix?
(b) Write down the general solution of the above system of equations, in the form of generic linear combination of a number of linearly independent solutions.
6. Let A be the 3×5 matrix $A=\left(\begin{array}{ccccc}3 & 2 & 1 & -1 & -2 \\ 1 & 1 & 2 & 1 & 3 \\ 3 & 1 & -4 & -5 & -13\end{array}\right)$.
(a) Determine the dimension of the linear span of the columns of A.
(b) For which values of the parameter c will the system of equations

$$
A \cdot\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right)=\left(\begin{array}{l}
5 \\
7 \\
c
\end{array}\right)
$$

admit at least a solution?
7. Provide an example in each of the following questions.
(a) Two square matrices A, B of the same size such that $A \cdot B \neq B \cdot A$.
(b) A non-zero square matrix C such that $C^{2}=0$
(c) Exhibit three different bases of \mathbb{R}^{3}.
(d) A non-linear map from the real vector space of all real-valued continuous functions on \mathbb{R} to itself.
(e) Two 3×3 matrices A, B such that $\operatorname{det}(A+B) \neq \operatorname{det}(A)+\operatorname{det}(B)$.
8. Let Q be the vector space consisting of all polynomials in two variables x and y of total degree at most 3 . Let $T: Q \rightarrow Q$ be the linear transformation with sends every element $f(x, y) \in Q$ to

$$
(2 x-y) \frac{\partial f}{\partial x}+y \frac{\partial f}{\partial y}
$$

(a) Find a basis B of Q.
(b) Determine the matrix $[T]_{B}^{B}$ for the basis B you gave in (a).
(c) Compute the determinant of the matrix $[T]_{B}^{B}$.
(d) Find a basis of the kernel $\operatorname{Ker}(T)$ and determine the dimension of $\operatorname{Ker}(T)$.
(e) What is the dimension of the vector subspace W of Q consisting of all polynomials $g(x, y)$ which can be expressed as $g=T(f)$ for some element f in Q ?
9. True/False questions.
(a) The set $\mathbb{R}[x]$ of all polynomials in x with real coefficients form a vector space, where vector addition is sum of polynomials and scalar multiplication is multiplying a polynomial by a real number. Let S be the subset of $\mathbb{R}[x]$ consisting of all polynomials $f(x)$ such that $\int_{0}^{1} f(x) d x=1$. This subset S is a vector subspace of $\mathbb{R}[x]$.
(b) Let P_{10} (respectively P_{12}) be the vector space of all polynomials in one variable x with coefficients in \mathbb{R} of degree at most 10 (respectively). Let $T: P_{10} \rightarrow P_{12}$ be a linear transformation. There exists an element $f(x) \in P_{12}$ such that $f \neq T(g)$ for every element $g(x) \in P_{10}$.
(c) If A is a 6×6 matrix and $A=-A^{T}$, then $\operatorname{det}(A)=0$.
(d) If B is a 5×5 matrix and $A=A^{T}$, then $\operatorname{det}(B)=0$.
(e) Suppose $\vec{a}_{1}, \ldots, \vec{a}_{9}$ are 9 elements of \mathbb{R}^{7}. There exist a 9×9 matrix A with $\operatorname{rank}(A)=3$ such that $A \cdot \vec{a}_{i}=\overrightarrow{0}$ for all $i=1, \ldots, 9$.
(f) Let A be a 5×5 matrix. Then $\operatorname{det}(2 \cdot A)=2 \cdot \operatorname{det}(A)$.
(g) Let A be a 5×5 matrix. If the sum of the 5 columns of A is the zero vector, then $\operatorname{det}(A)=0$.
(h) Suppose A is a 7×6 matrix and B is a 6×7 matrix. If $B \cdot A$ is an invertible 6×6 matrix, then the dimension of the null space of A is 1 .

