1. Which ones of the following limits exits? Explain your reasons for each of the limits.
(a) $\lim _{n \rightarrow \infty}\left(\begin{array}{cc}2 & 1 \\ -1 & 0\end{array}\right)^{n}$
(b) $\lim _{n \rightarrow \infty}\left(\begin{array}{ll}-2 & 1 \\ -1 & 0\end{array}\right)^{n}$
(c) $\lim _{n \rightarrow \infty}\left(\begin{array}{ll}2 & 1 \\ 1 & 0\end{array}\right)^{n}$
(d) $\lim _{n \rightarrow \infty}\left(\begin{array}{cc}3 & 5 \\ 5 & -3\end{array}\right)^{n}$
(e) $\lim _{n \rightarrow \infty}\left(\begin{array}{ll}1 & -2 \\ 2 & -2\end{array}\right)^{n}$
2. Find a formula for $\left(\begin{array}{cc}2 & 1 \\ -1 & 0\end{array}\right)^{n}$ valid for every positive integer n.
3. Let A be the 4×4 matrix

$$
A=\frac{1}{2} \cdot\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 1 & -1 & -1 \\
1 & -1 & 1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right)
$$

Find a basis of \mathbb{R}^{4} consisting of eigenvectors of A.
4. Let B be the 4×4 matrix

$$
B=\frac{1}{2} \cdot\left(\begin{array}{llll}
0 & 2 & 0 & 2 \\
2 & 0 & 2 & 0 \\
0 & 2 & 0 & 2 \\
2 & 0 & 2 & 0
\end{array}\right)
$$

Does there exist an invertible 4×4 matrix C such that $C^{-1} \cdot B \cdot C$ is diagonal? Find such a matrix C if there is one, or explain why such a matrix C does not exist.
5. (a) Find the 2×2 matrix A such that $\vec{x} \mapsto A \cdot \vec{x}$ for $\vec{x} \in \mathbb{R}^{2}$ is the counter-clockwise rotation about the origin by 45°.
(b) Does there exist an invertible 2×2 matrix C with real entries such that $C^{-1} \cdot A \cdot C$ is a diagonal matrix? Find such a matrix C if there is one, or explain why such a matrix C does not exist.
(c) Does there exist an invertible 2×2 matrix C with complex entries such that $D^{-1} \cdot A \cdot D$ is a diagonal matrix? Find such a matrix D if there is one, or explain why such a matrix D does not exist.
6. Let $A=\left(\begin{array}{ccc}1 & 0 & 4 \\ 0 & 5 & 0 \\ -4 & 0 & 9\end{array}\right)$. Compute e^{A} explicitly.
7. Find the general solution of the differential equation

$$
\frac{d^{3} y}{d x^{3}}+3 \frac{d^{2} y}{d x^{2}}+3 \frac{d y}{d x}+y=e^{-x}+\cos x-1
$$

8. Find the general solution of the differential equation

$$
\left(\frac{d^{2}}{d x^{2}}+2 \frac{d}{d x}+5\right)^{2} y=e^{(-1+2 \sqrt{-1}) x}
$$

9. Find the general solution of the differential equation

$$
\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+y=\frac{e^{x}}{x}
$$

on the half-line $x>0$.
10. Determine all solutions of the differential equation

$$
\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}-3 y=\cos (3 x)
$$

such that $\lim _{x \rightarrow \infty} y(x)=0$, or explain why no such solution exists.
11. Is there a solution $y(x)$ of the differential equation

$$
\left(\frac{d^{2}}{d x^{2}}+4\right)^{2} y=\sin (2 x)
$$

such that $y(x)$ is bounded on \mathbb{R} (in the sense that there exists a constant $C>0$ such that $|y(x)| \leq C$ for all $x \in \mathbb{R})$? Find all bounded solutions if they exist, and explain why every solution is unbounded.

