Math 240 Assignment 3, Spring 2015

Due in class on Friday, February 6

Part 1. Do (but do not hand in) the following problems from DELA:
§4.3 T/F Review 5, 6, 7; Problems 17, 18
§4.5 T/F Review 2, 4, 8, 9; Problems 17, 26, 32
Note: $\S 4.5$, on the concept of linear independence, is important for the notions of basis and dimension.
§4.6 T/F Reviews 2, 4, 8, 10 ; Problems 12,

Part 2. Do and write up the following problems from DELA:
§4.2 Problem 16
$\S 4.3$ Problems 10, 21, 24
$\S 4.4$ Problems 12, 25, 26, 28
§4.6 Problems 19, 24, 28

Part 3. Extra credit problems:
(i) $\S 4.5$, Problem 40 of DELA
(ii) Let n be a positive integer. Let x_{1}, \ldots, x_{n} be variables. Let A_{n} be the $n \times n$ matrix whose (i, j) entry is x_{j-1}^{i-1}, for all $i, j=1, \ldots, n$. (So the first row of A_{n} is $(1,1, \ldots, 1)$, the second row of A_{n} is $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, the third row of A_{n} is $\left(x_{1}^{2}, x_{2}^{2}, \ldots, x_{n}^{2}\right)$, etc.) Show that

$$
\operatorname{det}\left(A_{n}\right)=\prod_{1 \leq i<j \leq n}\left(x_{j}-x_{i}\right)
$$

