Math 240 Assignment 8, Spring 2015

Due in class on Friday, April 3, 2015

Included in this and the next assignment is a synopsis of the key idea behind Jordan forms, stated in a form suitable for application to system ofs first order linear ODE's with constant coefficients. Problems B1-B3 and C1 revisit previous materials in ODE and tie it with Jordan forms; they can be viewed as special cases treated in $\S 7.5$ of DELA. Problem C 2 is about an important general property of the Wronskian; we have discussed the statement in C 2 (a) in class, and indicated why C 2 (b) follows from $\mathrm{C} 2(\mathrm{a})$.

Theorem. (Jordan forms stated intrinsically. Let V be a finite dimensional vector space over \mathbb{C}, and let T be a linear transformation from V to itself. There exists a natural number $k \geq 1, k$ complex numbers $\lambda_{1}, \ldots, \lambda_{k}$, not necessarily distinct, and a \mathbb{C}-basis

$$
\mathbf{v}_{1,1}, \ldots, \mathbf{v}_{1, d_{1}} ; \mathbf{v}_{2,1}, \ldots, \mathbf{v}_{1, d_{2}} ; \ldots ; \mathbf{v}_{k, 1}, \ldots, \mathbf{v}_{1, d_{k}}
$$

of V, grouped in k cyclic blocks such that

$$
\begin{align*}
\left(T-\lambda_{i}\right)\left(\mathbf{v}_{i, 1}\right) & =0 \\
\left(T-\lambda_{i}\right)\left(\mathbf{v}_{i, 2}\right) & =\mathbf{v}_{i, 1} \\
\left(T-\lambda_{i}\right)\left(\mathbf{v}_{i, 3}\right) & =\mathbf{v}_{i, 2} \tag{1}\\
\ldots & \\
\left(T-\lambda_{i}\right)\left(\mathbf{v}_{i, d_{i}}\right) & =\mathbf{v}_{i, d_{i-1}}
\end{align*}
$$

Remark. (a) The characteristic polynomial of T is

$$
\pm \prod_{i=1}^{k}\left(\lambda-\lambda_{i}\right)^{d_{i}}= \pm\left(\lambda-\lambda_{1}\right)^{d_{1}} \cdot\left(\lambda-\lambda_{k}\right)^{d_{k}}
$$

(b) T is diagonalizable if and only if $d_{1}=d_{2}=\cdots=d_{k}=1$. In other words T is defective if and only if $d_{i}>1$ for at least one i, for some integer i between 1 and k.

Part A. (a) Read the above summary for Jordan forms, and also $\S \S 7.1-7.4$.
(b) Do and write up the answer to the following problems in DELA.
§7.1 Problem 20.
§7.2 Problem 12.
§7.3 Problem 4.
§7.4 Problems 12, 18, 24, 26.
Part B. Let V be the vector space over \mathbb{C} consisting of all solutions $y(x)$ of a differential equation

$$
\begin{equation*}
\left(\frac{d}{d x}-a_{1}\right)^{e_{1}} \cdots\left(\frac{d}{d x}-a_{r}\right)^{e_{r}} y(x)=0 \tag{2}
\end{equation*}
$$

with r mutually distinct complex numbers a_{1}, \ldots, d_{r}.

B1. Show that the differential operator $\frac{d}{d x}$ induces a linear transformation T from V to V itself.
[In other words, you need to show that the derivative $\frac{d y}{d x}$ of a solution $y(x)$ of (2) is again of solution of (2).]

B2. Find a positive integer k, k complex numbers $\lambda_{1}, \ldots, \lambda_{k}$ and \mathbb{C}-basis of V of V grouped in k blocks satisfying the condition (1) for Jordan forms.

B3. What is the matrix A for the linear transformation T with respect to the basis you found in question B 2 above?
[The matrix A you get should be an $n \times n$ matrix with $n=d_{1}+\cdots+d_{r}$.]
Part C. Extra credit problems.
C 1 . Let A be the $n \times n$ matrix you obtained in question B 3 , and let B be the $n \times n$ matrix

$$
B=\left[\begin{array}{ccccc}
0 & 0 & \cdots & 0 & c_{0} \\
1 & 0 & & & c_{1} \\
0 & 1 & 0 & \cdots & c_{2} \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
0 & \cdots & 0 & 1 & c_{n-1}
\end{array}\right]
$$

where $c_{0}, c_{1}, \ldots, c_{n-1}$ are complex numbers such that

$$
\left(\frac{d}{d x}-a_{1}\right)^{e_{1}} \cdots\left(\frac{d}{d x}-a_{r}\right)^{e_{r}}=\frac{d^{n}}{d x^{n}}-c_{n-1} \frac{d^{n-1}}{d x^{n-1}}-c_{n-2} \frac{d^{n-2}}{d x^{n-2}}-\cdots-c_{1} \frac{d}{d x}-c_{0}
$$

The (possibly) non-entries of B are: 1's immediately below the diagonal, and c_{0}, \ldots, c_{n-1} in the last column.
(a) Use the method in $\S 7.2$ to show that ODE (2) is equivalent to the system of ODE 3

$$
\begin{equation*}
\frac{d}{d x} \mathbf{z}=B \cdot \mathbf{z} \tag{3}
\end{equation*}
$$

(b) Explain the reason why the linear system of ODE

$$
\begin{equation*}
\frac{d}{d x} \mathbf{y}=A \cdot \mathbf{y} \tag{4}
\end{equation*}
$$

is equivalent to the $\operatorname{ODE}(2)$ in part B by showing that the matrices A and B are conjugate, i.e. there exists an invertible matrix C such that $A=C^{-1} B \cdot C$.
[Here \mathbf{y} is an $n \times 1$ column vector representing an "unknown" function in the variable x. If the question looks too general at first, you might want to begin with the simpler special case when $r=1$ in the notation of part B.]

C2. Let A be an $n \times n$ matrix.
(a) Let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ be n column vectors with n entries. Let C be the $n \times n$ matrix with $\mathbf{v}_{1}, \ldots, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ as its n columns, in this order. For each $i=1, \ldots n$, let B_{i} be the $n \times n$ matrix obtained by replacing the i-th column of C by the vector $A \cdot v_{i}$. Show that

$$
\operatorname{det}\left(B_{1}\right)+\operatorname{det}\left(B_{2}\right)+\cdots+\operatorname{det}\left(B_{n}\right)=\operatorname{Tr}(A) \cdot \operatorname{det}(B)
$$

(b) Use (a) to show that the Wronskian $W\left(\mathbf{x}_{1}, \cdots, \mathbf{x}_{n}\right)(t)$ of any n solutions $\mathbf{x}_{1}(t), \ldots, \mathbf{x}_{n}(t)$ of the system of linear differential equation

$$
\begin{equation*}
\frac{d}{d t} \mathbf{x}(t)=A(t) \cdot \mathbf{x}(t) \tag{5}
\end{equation*}
$$

satisfies the differential equation

$$
\begin{equation*}
\frac{d}{d t} W\left(\mathbf{x}_{1}, \cdots, \mathbf{x}_{n}\right)(t)=\operatorname{Tr}(A(t)) \cdot W\left(\mathbf{x}_{1}, \cdots, \mathbf{x}_{n}\right) \tag{6}
\end{equation*}
$$

Here $A(t)$ is a $n \times n$ matrix whose entries are smooth functions in the variable t.
(c) Show that the Wronskian $W\left(y_{1}, \ldots, y_{n}\right) n$ solutions $y_{1}(x), \ldots, y_{n}(x)$ of

$$
\begin{equation*}
\frac{d^{n}}{d x^{n}} y+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=0 \tag{7}
\end{equation*}
$$

satisfies

$$
\begin{equation*}
\frac{d}{d x} W\left(y_{1}, \ldots, y_{n}\right)+a_{n-1}(x) W\left(y_{1}, \ldots, y_{n}\right)=0 \tag{8}
\end{equation*}
$$

[You can use (b) above, or do it directly using the reasoning for (b).]

