
MATH 240 ASSIGNMENT 9, SPRING 2015

Due in class on Friday, April 10, 2015

Part 0. Notes on §7.5 and §7.8.

0.1. The theorem below gives the relation between Jordan forms and general solutions of homogeneous
system of first order linear ODE’s. (Please compare it with Theorem 7.5.4 in the textbook DELA.) In
other words the problem of solving a homogeneous system d

dt x = Ax of linear ODE’s is reduced to a
problem of linear algebra.

Theorem (Jordan form and systems of first order linear ODE) Let A be an n×n matrix and let

v1,1, . . . ,v1,d1 ;v2,1, . . . ,v1,d2 ; . . . ;vk,1, . . . ,v1,dk

be a C-basis of Cn group in k blocks, such that

(A−λ j)(v j,1) = 0

(A−λ j)(v j,2) = v j,1

(A−λ j)(v j,3) = v j,2

· · ·
(A−λi)(v j,d j) = v j,di−1

(1)

for each j = 1, . . . ,k, where λ1,λ2, . . . ,λk are complex numbers, not necessarily distinct (consequently
±(λ −λ1)

d1 · · ·(λ −λk)
dk is the characteristic polynomial of A.) Then

x j,1(t) := eλ jtv j,1,

x j,2(t) := teλ jtv j,1 + eλ jtv j,2,

x j,3(t) :=
t2

2!
eλ jtv j,1 + teλ jtv j,2 + eλ jtv j,3,

...
...

x j,h(t) :=
h−1

∑
i=0

t i

i!
eλ jtv j,h−i 1≤ h≤ d j,

...
...

x j,d j(t) :=
td j−1

(d j−1)!
eλ jtv j,1 +

td j−2

(d j−2)!
eλ jtv j,2 + · · ·+ teλ jtv j,d j−1 + eλ jtv j,d j

(2)

are d j linear independent solutions of the system of linear first order ODE

d
dt

x = A ·x (3)

for each j = 1, . . . ,k. Moreover

x1,1, . . . ,x1,d1 ;x2,1, . . . ,x2,d2 ; . . . ;xk,1, . . . ,xk,dk

form a C-basis of the space of all solutions of (3).
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0.2. How to solve (3) via matrix exponential.

Step 1. Compute det(λ · In−A) and factor it:

det(λ · In−A) =
r

∏
i=1

(λ −λi)
ei (4)

where λ1, . . . ,λr are r distinct eigenvalues, with multiplicities e1, . . . ,er. Clearly e1+ · · ·+er = n.

[This step requires work, and is computationally the hardest. But lets assume that you have all
the eigenvalues of A.]

Step 2. Compute the generalized eigenspaces

Vi := Ker(A−λi · In)
ei (5)

of the r eigenvalues λ1, . . . ,λr. The output of your computation is a basis wi,1, . . . ,wi,ei of Vi. Let
C be the invertible n×n matrix with w1,1, . . . ,w1,e1 , · · · ,wr,1, . . . ,wr,er as its n columns, i.e.

C := [w1,1, . . . ,w1,e1 ; · · · ;wr,1, . . . ,wr,er ] (6)

[It is a fact that dim(Vi) = ei for each i= 1, . . . ,r, and these r generalized eigenspaces are linearly
independent. For each i = 1, . . . ,r, we have an non-decreasing sequence

Ker(A−λi · In)⊆ Ker(A−λi · In)
2 ⊆ ·· · ⊆ Ker(A−λi · In)

m

of subspaces, which stabilizes for m≥ m0 on, for some m0 ≤ ei.]

Step 3. Let Λ be the n×n diagonal matrix

Λ :=


λ1

. . .
λ1

. . .
λr

 (7)

where each eigenvalue λi appears ei times. Let

N :=C−1 ·A ·A−Λ. (8)

Let e := max{e1, . . . ,er}. The key facts are

(i) Λ ·N = N ·Λ

(ii) Ne = 0

In other words the matrix A is the sum of two commuting n× n matrices S := C ·Λ ·C−1 and M :=
C ·N ·C−1, where S is diagonalizable and Me = 0. Now we can write down etA:

etA =C · etΛ · etN ·C−1 (9)
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where

etΛ =


eλ1t

. . .
eλ1t

. . .
eλrt

 (10)

and

etN = In + tN +
t2

2
N2 +

t3

3!
N3 + · · ·+ te−1

(e−1)!
Ne−1 (11)

We conclude that the general solution of (3) is

x(t) =C · etΛ · etN ·b, b ∈ Cn, (12)

where etΛ and etN are given by (10) and (11) respectively. In other words every solution of (3 is a
unique linear combination of the n columns of the matrix-valued function C ·etΛ ·etN in the variable t.

Part A. (a) Read Part 0 and §§7.5, 7.8, 7.9 of DELA.

(b) Do and write up the answers to following problems from DELA

§7.5 Problems 4, 10, 12.

§7.8 Problems 4, 8, 10.

§7.9 Problem 10, 20.

Part B. Let A be an n×n matrix in Mn(C) as in Part 0. Let v1,1, . . . ,v1,d1 ;v2,1, . . . ,v1,d2 ; . . . ;vk,1, . . . ,v1,dk

be a C-basis of Cn group in k blocks, such that satisfying (1).

B1. Show that for each j = 1, . . . ,k we have(
d
dt
−A
)

eλ jtv j,1 = 0(
d
dt
−A
)

th

h!
eλ jtv j,1 =

th−1

(h−1)!
eλ jtv j,1 for all h≥ 1(

d
dt
−A
)

eλ jtv j,r =−eλ jtv j,r−1 for all r = 2, . . . ,d j(
d
dt
−A
)

th

h!
eλ jtv j,r =−

th

h!
eλ jtv j,r−1 +

th−1

(h−1)!
eλ jtv j,r for all h≥ 1, r = 2, . . . ,d j

(13)

B2. Use B1 to verify that the functions x1,1, . . . ,x1,d1 ;x2,1, . . . ,x2,d2 ; . . . ;xk,1, . . . ,xk,dk defined by (2)
indeed are solutions of the system (3) of first order linear ODE.

Part C. Extra credit problems.

C1. Use the same notation as in part B. Let C be the invertible n×n matrix whose n columns are the
vectors v1,1, . . . ,v1,d1 ;v2,1, . . . ,v1,d2 ; . . . ;vk,1, . . . ,v1,dk .
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(a) What is the matrix C−1 ·A ·C? (Write down an explicit expression/formula for it.)

(b) Give an explicit expression of the matrix exponential et C−1·A·C.

(c) Give an explicit expression of etA in terms of C and your answer for (b).

C2. (This question has many possible answers.) Suppose you are given an n× n matrix A and a
factorization of its characteristic polynomial. (In particular you have been handed all eigenvalues
of A.) According to the theorem on Jordan forms, which you take on faith, there exist a basis
v1,1, . . . ,v1,d1 ;v2,1, . . . ,v1,d2 ; . . . ;vk,1, . . . ,v1,dk of Cn satisfying (1) for a suitable possible integer
k and eigenvalues λ1, . . . ,λk. Although the theorem says that k is uniquely determined by A, and
the k pairs (λ1,d1), . . . ,(λk,dk) are also uniquely determined up by A up to re-indexing, you are
not told what they are. How will you compute a basis

v1,1, . . . ,v1,d1 ;v2,1, . . . ,v1,d2 ; . . . ;vk,1, . . . ,v1,dk

with the required properties? Please describe an algorithm (which in principle can be imple-
mented on a computer which has a package installed for solving systems of linear equations.)
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