
for some function H(x, y). This is possible provided that

∂

∂x
f(x, y) = − ∂

∂y
g(x, y). (3)

If the identity (3) holds at every point (x, y), to find a function H(x, y) such that ∂H(x,y)
∂y = f(x, y)

and ∂H(x,y)
∂x = −g(x, y) we proceed in two steps:

1. Regarding x as a constant, we find an antiderivative of the function y 7→ f(x, y), in the form

H(x, y) =
∫

f(x, y) dy + k(x).

This guarantees that ∂H(x,y)
∂y = f(x, y).

2. We then determine k(x) so that H satisfies the additional relation ∂H(x,y)
∂x = −g(x, y).

For the Hamiltonian system (2), the function H is constant along every solution. Indeed, by
the chain rule

d

dt
H(x(t), y(t)) =

∂H

∂x
x′(t) +

∂H

∂y
y′(t) =

∂H

∂x

∂H

∂y
+

∂H

∂y

(
−∂H

∂x

)
= 0 .

The orbits of (2) are thus contained in level sets of H, i.e. sets where H(x, y) = constant.

3 - Phase plane diagrams for linear systems

Consider the linear homogeneous system

(
x′

y′

)
=

(
a b
c d

)(
x
y

)
. (4)

Depending on the eigenvalues λ1, λ2 of the matrix A =
(

a b
c d

)
, various cases arise.

We first assume that the eigenvalues λ1, λ2 are real and distinct. Let v1,v2 be corresponding
eigenvectors. The general solution is thus

c1e
λ1tv1 + c2e

λ2tv2 .

CASE 1 (stable node): λ1 < λ2 < 0. As t → +∞, all trajectories flow into the origin. The
component along v1 decays faster, and trajectories are asymptotically tangent to v2.

CASE 2 (unstable node): 0 < λ1 < λ2. As t → +∞, trajectories flow away from the origin,
becoming arbitrarily large. For negative times, as t → −∞, the component along v2 decays faster,
and trajectories are asymptotically tangent to v1.
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CASE 3 (saddle): λ1 < 0 < λ2. The zero solution is unstable. As t → +∞ the component along
v1 approaches zero, while the component along v2 becomes arbitrarily large. On the other hand,
as t → −∞, the v1-component becomes large, while the v2 component approaches zero.

2

v
1

v
2 v

v

1

2

λ   < λ   < 01 2 0 < λ   < λ
1 2

v2

v1

λ   < 0 < λ1

Left: a stable node. Middle: an unstable node. Right: a saddle.

CASE 4 (degenerate node): Assume that the matrix A has a double eigenvalue λ ∈ IR.

If λ < 0 then the origin is a stable node. If A =
(

λ 0
0 λ

)
is diagonal, then all trajectories

are half lines emanating from the origin. If A is not diagonalizable (only one linearly independent
eigenvector v1 can be found), then trajectories approach the origin tangent to v1.

If λ > 0 then the origin is an unstable node. The orbits are the same as in the stable case,
reversing the time direction.

2y

x

y

x

λ  = λ  < 0 λ  = λ  > 0
1 2 1

Left: a stable degenerate node (in the case of only one linearly independent eigenvector).
Right: an unstable degenerate node (in the case of two linearly independent eigenvectors).

Next, assume that the matrix A has complex eigenvalues: λ = α± iβ, with β 6= 0.

CASE 5 (center): If α = 0, solutions are periodic. Trajectories are ellipses (or circumferences)
centered at the origin.

CASE 6 (stable spiral point): If α < 0, trajectories are spirals converging to the origin as

3



t → +∞.

CASE 7 (unstable spiral point): If α > 0, trajectories are spirals moving away from the origin
as time increases.

λ = 

x

y y

x

y

x

λ = α 
λ = α   

+ iβ
+ i β

α > 0
α < 0

_+ i β_

_

Left: a center. Middle: a stable spiral point. Right: an unstable spiral point.

4 - Stability for nonlinear systems

Given the differential equation on IRn

x′ = f(x), (5)

we denote by x(t) = φ(t, y) the solution to (5) which starts at the point y ∈ IRn:

x(0) = y . (6)

The function φ satisfies the semigroup property

φ(t + τ, y) = φ(t , φ(τ, y)) for every t, τ ≥ 0, y ∈ IRn.

We say that x0 ∈ IRn is an equilibrium point if f(x0) = 0.

The point x0 is a stable equilibrium if for every ε > 0 there exists δ > 0 such that:

if |y − x0| < δ then
∣∣φ(t, y)− x0

∣∣ < ε for all t ≥ 0.

The point x0 is an asymptotically stable equilibrium if, in addition, for |y − x0| < δ one has

lim
t→+∞

φ(t, y) = x0 .
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