Exponential of a real (3 X 3)-matrix with repeated eigenvalues

If A is a real (3 X 3)-matrix with real eigenvalues (xl,xz,xz)

so the characteristic equation
p(\) = det(A - X\XI) =0

has a single real root M and a double real root A then the

exponential of A i1s given by
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If A 1s a real (3 X 3)-matrix with one real eigenvalue (X\,\,\)

so A 1s a triple root of the characteristic equation
p(\) = det(A - X\XI) =0

then the exponential of A is given by

elA = M (1 4 t(A-ND) + BE2(A-NT)2).
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Green’s Functions

Here are the Green’s functions for second order constant coefficient
linear differential equation. We find a particular solution yp to
the differential equation Ly = F where L = P(D) = (D—xl)(D—xz). Note
yp(O) = 0 and yé(o) = 0.

Case 1. Two distinct real roots xl and x2.
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Case 2. One real repeated root X\ so Ly = P(D)y = (D—x)zy.
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Case 3. Ly = P(D) = (D—a)2 +b% =0p? - 2aD + (a2+b2) AN =a * ib
X
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0
’ t
1 aXg: -3 :
Yo (X) = e 51n(bX)J e ““cos(bt)) F(t) dt Again 0's
p b 0 can be changed.
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Using a trigonometric identity for sin(x-y) this can be written as

Yp(x) = - J A Vsin(b(x-1)) F(t) dt
0 Again 0 can be changed.



