Math 241 Homework 10, Fall 2019

Week of November 11; due Monday November 25
Part 1. From the book Applied PDE by Haberman.

- Exercise 10.3.7
- Exercise 10.4.7(a), (b).
- Exercise 10.6.3
- Exercise 10.6.9

Part 2. From old final exams.

- Fall 2012 final exam, question 10
- Spring 2013 final exam, question 5
- Fall 2013 final exam, question 8
- Fall 2013 makeup final exam, question 8
- Spring 2015 final exam, question 10
- Fall 2015 final exam, problem 8
- Spring 2016 final exam, question 8
- Fall 2016 final exam, problem 6

Part 3. (extra credit, on Fourier inversion) Let $f(x)$ be a function on \mathbb{R} such that

$$
\int_{-\infty}^{\infty}|f(x)| d x<\infty
$$

Let

$$
F(\omega):=\frac{1}{2 \pi} \int_{-\infty}^{\infty} f(x) e^{\sqrt{-1} x \omega} d x
$$

be the Fourier transform of f. Let $x_{0} \in \mathbb{R}$, and define a function $g_{x_{0}}(t)$ by

$$
g_{x_{0}}(t):=\frac{f\left(x_{0}+t\right)+f\left(x_{0}-t\right)}{2}-f\left(x_{0}\right) .
$$

Assume that there exist a positive number $\delta_{0}>0$ such that

$$
\int_{0}^{\delta_{0}}\left|\frac{g_{x_{0}}(t)}{t}\right| d t<\infty
$$

This problem leads you to a proof that

$$
f\left(x_{0}\right)=\int_{-\infty}^{\infty} F(\omega) e^{\sqrt{-1} \omega x} d \omega
$$

under the above assumption on $g_{x_{0}}$. Note that this assumption holds if f is differentiable at x_{0}.
(i) Let $R>\delta$ be positive numbers. (Later we will let $R \rightarrow \infty$ and $\delta \rightarrow 0$.) Let

$$
S_{R}\left(x_{0}\right):=\int_{-R}^{R} F(\omega) e^{\sqrt{-1} \omega x_{0}} d \omega
$$

Show that

$$
S_{R}\left(x_{0}\right)=\frac{1}{\pi} \int_{0}^{\infty} \frac{\sin (R t)}{t} \cdot f(x+t) d t=\frac{2}{\pi} \int_{0}^{\infty} \frac{\sin (R t)}{t} \cdot \frac{f(x+t)+f(x-t)}{2} d t
$$

(ii) Use the fact that

$$
\int_{0}^{\infty} \frac{\sin y}{y} d y=\frac{\pi}{2}
$$

to show that

$$
S_{R}\left(x_{0}\right)-f\left(x_{0}\right)=\int_{0}^{\infty} \frac{\sin (R t)}{t} \cdot g_{x_{0}}(t) d t
$$

(iii) It is a general fact, call the Riemann-Lebesgue lemma, that for any function $h(x)$ on \mathbb{R} such that

$$
\int_{-\infty}^{\infty}|h(x)| d x<\infty
$$

we have

$$
\lim _{|\omega| \rightarrow \infty} \int_{-\infty}^{\infty} h(x) e^{\sqrt{-1} x \omega} d x=0
$$

Show that the Riemann-Lebesgue lemma holds if $h(x)$ is a step function of the form $h(x)=1$ for $x \in[a, b], h(x)=0$ for $x \notin[a, b]$, where $a<b$ are real numbers.
[Note: The Riemann-Lebesgue lemma follows from the above special case, for a function $h(x)$ above can be approximated by a linear combination of step functions. Precisely, for every positive number $\epsilon>0$, there exist a finite linear combination $h_{1}(x)$ of step functions such that $\int_{-\infty}^{\infty}\left|h(x)-h_{1}(x)\right| d x<\epsilon$.]
(iv) Write $S_{R}\left(x_{0}\right)-f\left(x_{0}\right)$ as a sum of two integrals I_{1} and I_{2} :

$$
S_{R}\left(x_{0}\right)-f\left(x_{0}\right)=\int_{0}^{\delta} \frac{\sin (R t)}{t} \cdot g_{x_{0}}(t) d t+\int_{\delta}^{\infty} \frac{\sin (R t)}{t} \cdot g_{x_{0}}(t) d t=: I_{1}+I_{2}
$$

Use the Riemann-Lebesgue lemma and the assumption on $g_{x_{0}}(t)$ to show that

$$
\lim _{R \rightarrow \infty}\left(S_{R}\left(x_{0}\right)-f\left(x_{0}\right)\right)=0
$$

i.e. $\int_{-\infty}^{\infty} F(\omega) e^{-\sqrt{-1} x_{0} \omega} d \omega=f\left(x_{0}\right)$.

Note: In the above we have used the equality

$$
\int_{0}^{\infty} \frac{\sin y}{y} d y=\frac{\pi}{2}
$$

This formula can be proved in a number of ways. Perhaps the easiest is to use the calculus of residues, an extremely useful tool from complex analysis, also called "complex variables".

