Math 241 Homework 3, Fall 2019

Week of September 9 ; Due Friday September 20

Reading: $\S 2.5$ and $\S \S 3.1-3.6$ of Haberman
Part 1. From the book Applied PDE by Haberman.

- $\S 2.4$, exercise 2.4.7 (b)
- $\S 2.5$, exercises 2.5.1 (d), 2.5.5(b), 2.5.6 (b)
- §3.3, exercise 3.3.9. Here $f(x)$ is a piecewise smooth function on the interval $[0, L]$, $L>0$. In the case when $L=\pi$ and $f(x)=1+x$ on $[0, \pi]$, express your conclusion explicitly.

Part 2. From old final exams.

- Fall 2012 final exam, problem 2.
- Fall 2013 final exam, problem 3. To justify your answers, either give a sufficient reason why the statement is true, or give a counter-example.
- Spring 2014 final exam, problem 4 (a).

Part 3. Extra credit problems.
A. From old exams

- Spring 2013 final exam, problem 6. (Notice that part of the boundary condition is that the restriction to the real line of the unknown function $u(x, y)$ is the discontinuous step function with value 1 on $[-1,1]$ and 0 elsewhere. So the solution $u(x, y)$ might be discontinuous.)
- Spring 2014 final exam, problem 4 (b).
B. We showed in class that for given a continuous periodic function function $f(\theta)$ on \mathbb{R} with period 2π, the solution of the Laplace equation $\triangle u=0$ on the closed unit disk $\left\{(x, y): x^{2}+y^{2} \leq 1\right\}$ such that $u(\cos \theta, \sin \theta)=f(\theta)$ for all θ is given by the formula

$$
\begin{align*}
u(r \cos \theta, r \sin \theta)= & \frac{1}{2 \pi} \int_{-\pi}^{\pi} f(\phi) d \phi+\sum_{n=1}^{\infty} r^{n} \cos (n \theta) \cdot \frac{1}{\pi} \int_{0}^{2 \pi} f(\phi) \cos (n \phi) d \phi \\
& +\sum_{n=1}^{\infty} r^{n} \sin (n \theta) \cdot \frac{1}{\pi} \int_{0}^{2 \pi} f(\phi) \sin (n \phi) d \phi, \quad 0 \leq r<1, \theta \in \mathbb{R} . \tag{1}
\end{align*}
$$

(a) Show that the formula (1) can be formally rewritten as

$$
\begin{equation*}
u(r \cos \theta, r \sin \theta)=\int_{0}^{2 \pi} K(r, \theta-\phi) d \phi, \quad 0 \leq r<1, \theta \in \mathbb{R} \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
K(r, \theta-\phi):=\frac{1}{2 \pi}+\frac{1}{\pi} \sum_{n=1}^{\infty} r^{n} \cos (n(\theta-\phi)), \quad 0 \leq r<1 \tag{3}
\end{equation*}
$$

(b) Show that

$$
\begin{equation*}
K(r, \theta-\phi)=\frac{1-r^{2}}{1-2 r \cos (\theta-\phi)+r^{2}}, \quad 0 \leq r<1 . \tag{4}
\end{equation*}
$$

(Hint: Since $r^{n} \cos (n(\theta-\phi))=\operatorname{Re}\left[\left(r e^{\sqrt{-1}(\theta-\phi)}\right)^{n}\right]$, you can compute the infinite series $\sum_{n=1}^{\infty} r^{n} e^{\sqrt{-1}(n(\theta-\phi))}$ first.)

