Math 241 Homework 8, Fall 2019

Week of October 28; due Monday November 11
Part 1. From the book Applied PDE by Haberman.

- Exercise 7.9.2 (c)
- Exercise 7.9.3 (c)
- Exercise 7.9.6

Part 2.
A. Find a solution of the equation

$$
\triangle u=0
$$

where the unknown function $u(x, y, z)$ is defined and bounded on the circular cylinder

$$
\left\{x^{2}+y^{2} \leq a^{2}, 0 \leq z \leq L\right\}
$$

$a, L>0$ are positive constants, and u satisfies the following boundary conditions
$-u(x, y, 0)=0=u(x, y, L)$ for all x, y with $x^{2}+y^{2} \leq a$,
$-u(x, y)=u_{0}$ whenever $x^{2}+y^{2}=a^{2}$,
where u_{0} is a constant. Simplify your answer as much as possible. (Hint: Your solution would involve modified Bessel functions.)
B. The modified Bessel function $I_{0}(x)$ is a solution of the ordinary differential equation

$$
\left[\frac{d^{2}}{d x^{2}}+\frac{1}{x} \frac{d}{d x}-1\right] u=0
$$

(a) Let $v(x)=\sqrt{x} I_{0}(x)$. Show that $v(x)$ is a solution of the differential equation

$$
\left[\frac{d^{2}}{d x^{2}}-\left(1-\frac{1}{4 x^{2}}\right)\right] v=0
$$

Note that the above differential equation suggests that $v(x)$ will approximate $A \cdot e^{x}$ as x goes to ∞, where A is a constant. (In fact $A=\frac{1}{\sqrt{2 \pi}}$.)
(b) (extra credit) To improve the approximation $w(x):=e^{-x} v(x)$, show that $w(x)$ satisfies the differential equation

$$
\left[\frac{d^{2}}{d x^{2}}+2 \frac{d}{d x}+\frac{1}{4 x^{2}}\right] w=0
$$

(c) Suppose that

$$
w(x)=1+\frac{c_{1}}{x}+\frac{c_{2}}{x^{2}}+\frac{c_{3}}{x^{3}}+\cdots
$$

is a satisfies the differential equation in (b). Substitute $w(x)$ into the differential equation to get

* $c_{1}=\frac{1}{8}$,
$* c_{2}=\frac{3^{2}}{2.8} c_{1}$,
$* c_{3}=\frac{5^{2}}{3.8} c_{2}$,
etc. The result in expression is an asymptotic expansion of $I_{0}(x)$.

