## Some more practice problems for math 241

1. Find a smooth function $u(x, y)$ defined on the upper half-plane $\left\{(x, y) \in \mathbb{R}^{2} \mid y \geq 0\right\}$ which satisfied the Laplace equation

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0
$$

and

$$
u(x, 0)=\frac{2}{x^{2}+4}, \quad \lim _{x^{2}+y^{2} \rightarrow \infty} u(x, y)=0
$$

(Hint: Consider the Fourier transform $U(\omega, y)$ in the $x$-variable of the function $u(x, y)$.)
2. Let $D=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2} \geq 1\right\}$, the exterior of a unit circle on the plane. Find a smooth and bounded function $u(x, y)$ on $D$ such that

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=4 r^{-4}
$$

and

$$
u(\cos \theta, \sin \theta)=3 \cos (3 \theta)-\sin (4 \theta) \quad \text { for all } \theta
$$

3. (a) Consider the eigenvalue problem,

$$
\left[\frac{d^{2}}{d x^{2}}+\frac{2}{x} \frac{d}{d x}-\frac{6}{x^{2}}+\lambda\right] u(x), \quad u(1)=0, u(x) \text { bounded near } 0,
$$

where the unknown function $u(x)$ is defined on the interval $x \in[0,1]$. Find a function $h(x)$ so that after multiply the above equation by $h(x)$, the resulting equation has the standard Sturm-Liouville form

$$
\left(p u^{\prime}\right)^{\prime}+q v+\lambda \sigma u .
$$

Also, find the functions $p(x), q(x)$ and $\sigma(x)$.
(b) What are the eigenvalues of this equation? (Your answer will involve certain special functions.)
4. Find the general harmonic quartic homogenous polynomial $u(x, y, z)$, i.e. $u(x, y, z)$ is homogeneous of degree 4, and

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}=0
$$

(Please give a set of linearly independent quartic homogeneous polynomials $u_{1}, \ldots, u_{m}$, such that every quartic homogeneous polynomial $u$ can be written as $u=c_{1} u_{1}+\cdots+$ $c_{m} u_{m}$ for suitable numbers $c_{1}, \ldots, c_{m}$ uniquely determined by $u$.)
5. Let

$$
x^{2}=\sum_{i=1}^{\infty} a_{i} J_{0}\left(j_{i} x\right), \quad x \in[0,1]
$$

be the Fourier-Bessel expansion of the function $x^{2}$ on $[0,1]$, where $j_{1}<j_{2}<\cdots$ are the positive zeros of the Bessel function $J_{0}(x)$. Find a closed-form expression of

$$
\sum_{i=1}^{\infty} a_{i}^{2} J_{1}\left(j_{i}\right)^{2}
$$

(You can use the formulas $\int x^{3} J_{0}(x) d x=x\left(x^{2}-4\right) J_{1}(x)+2 x^{2} J_{0}(x)+C$ and $\int_{0}^{1} x J_{0}(a x)^{2} d x=\frac{1}{2}\left(J_{0}(a)^{2}+J_{1}(a)^{2}\right) \quad \forall a \in \mathbb{R}$.

6 . Find a function $u(x, y, t)$ defined on

$$
\left\{(x, y, t) \in \mathbb{R}^{3} \mid x^{2}+y^{2} \leq 1, t \geq 0\right\}
$$

which satisfies the wave equation

$$
\frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}
$$

and the function $v(r, \theta, t):=u(r \cos \theta, r \sin \theta, t)$ satisfies

$$
\frac{\partial v}{\partial r}(1, \theta, t)=0, \quad v(r, \theta, 0)=J_{0}\left(j_{1,1} r\right), \quad \text { and } \quad \frac{\partial v}{\partial t}(r, \theta, 0)=-3 J_{0}\left(j_{1,3} r\right)
$$

for all $r \in[0,1]$, all $t \geq 0$ and all $\theta$. Here $j_{1,1}<j_{1,2}<j_{1,3}<\cdots<j_{1, n}<\cdots$ are the positive zeros of the Bessel function $J_{1}(x)$ arranged in increasing order. (Recall that $\left.\frac{d}{d x} J_{0}(x)=-J_{1}(x).\right)$
7. The function $u(x, t)$ satisfies 1 D heat equation

$$
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}+x, \quad u_{x}(0, t)=1, \quad u_{x}(1, t)=\alpha \text { for all } x \in[0,1], \text { all } t \geq 0
$$

(a) Find the constant $\alpha$ such that the equilibrium solution exists.
(b) Use the constant $\alpha$ in (a) and initial condition $u(x, 0)=f(x)$ to find the solution $u(x, t)$.
8. Find solution to heat equation on the square $0 \leq x \leq L, 0 \leq y \leq L$

$$
\frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+2 u
$$

such that $u=0$ on all four sides of the square and $u(x, y, 0)=f(x, y)$. What is the condition on $L$ so that every solution $u \rightarrow 0$ as $t \rightarrow \infty$.
9. Under what condition on $f(x)$, there is a solution to the Laplace equation on a rectangle $[0, L] \times[0, H]:$

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0,
$$

with boundary conditions

$$
u_{x}(x, 0)=f(x), u_{x}(x, H)=0, u_{y}(0, y)=0, u_{y}(L, y)=0
$$

10. The displacement $u(r, \theta, t)$ of membrane of radius 1 with fixed boundary satisfies wave equation

$$
\frac{\partial^{2} u}{\partial t^{2}}=\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial u}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}, \quad 0 \leq r \leq 1,-\pi \leq \theta \leq \pi, t \geq 0
$$

and boundary condition $u(1, \theta, t)=0$. Find the solution $u(r, \theta, t)$ with initial conditions

$$
u(r, \theta, 0)=J_{0}\left(z_{0,4} r\right), u_{t}(r, \theta, 0)=J_{0}\left(z_{0,2} r\right)
$$

