Math 241 PRACTICE PROBLEMS

Practice problems, Week of November 25

1. Find a solution of the Poisson equation

$$
\triangle u=\sqrt{x^{2}+y^{2}}, \quad u(2 \cos \theta, 2 \sin \theta)=16 \cos (3 \theta) \quad \forall \theta \in \mathbb{R}
$$

where the unknown function $u(x, y)$ is defined on the circular disk

$$
\left\{(x, y) \in \mathbb{R} \mid x^{2}+y^{2} \leq 4\right\}
$$

2. Find a function $u(x, y, z)$ defined on the circular cylinder

$$
D:=\left\{(x, y, z): x^{2}+y^{2} \leq a^{2}, 0 \leq z \leq h\right\}
$$

where $a>0$ is a constant, such that

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}=0
$$

u is bounded,

$$
u(x, y, z)=\cos (z)-3 \cos (3 z)+5 \cos (5 z) \text { if } x^{2}+y^{2}=a^{2}
$$

and

$$
\frac{\partial u}{\partial z}(x, y, 0)=\frac{\partial u}{\partial z}(x, y, h)=0
$$

3. Consider the one-dimensional wave equation with time dependent "forcing"

$$
\frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial^{2} u}{\partial x^{2}}+\cos (\omega t), \quad \frac{\partial u}{\partial x}(0, t)=0=\frac{\partial u}{\partial x}(1, t)
$$

where the unknown function $u(x, t)$ is defined for $0 \leq x \leq 1, t \geq 0$.
(a) For what values of ω does resonance occur?
(b) Give an example of a resonant solution.
(c) Find the solution when there is no resonance.
4. Find a solution of the heat equation

$$
\frac{\partial u}{\partial t}=\frac{\partial u}{\partial x^{2}}, \quad 0 \leq x \leq 1, t \geq 1
$$

such that

$$
u(x, 0)=\cos (7 \pi x / 2) \forall x \in[0,1], \quad \frac{\partial u}{\partial x}(0, t)=0, u(1, t)=0 \forall t \geq 0
$$

5. Find a solution $u(x, y)$ of the Laplace equation defined on the upper half-plane such that

$$
\frac{\partial u}{\partial y}(x, 0)=\frac{2 x}{\left(1+x^{2}\right)^{2}}
$$

[Hint: $\frac{d}{d x} \frac{1}{1+x^{2}}=-\frac{2 x}{\left(1+x^{2}\right)^{2}}$.]
6. Find a solution $u(x, t)$ of the wave equation

$$
\frac{\partial^{2} u}{\partial t^{2}}+2 \frac{\partial u}{\partial t}+u=\frac{\partial u}{\partial x^{2}}
$$

defined on $\{(x, t): x \in \mathbb{R}, t \geq 0\}$ which satisfies the initial conditions

$$
u(x, 0)=f(x), \frac{\partial u}{\partial t}(x, 0)=0
$$

where $f(x)$ is a given function on \mathbb{R}.
7. Let $u(x, y, z)$ be a function on the box $[0,1] \times[0,1] \times[0,1]$ which satisfies the Laplace equation $\triangle u=0$, and equals $\sin (3 \pi x) \sin (5 \pi y)$ on the face $z=0$, and is equal to 0 on all remaining faces. What is $u\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$?
8. Let u be a function on the unit sphere $S^{2}:=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}+z^{2}=1\right\}$, and let $u(\phi, \theta)$ be this function expressed in spherical coordinates. Let

$$
u(\phi, \theta)=\sum_{n=0}^{\infty} \sum_{-n \leq k \leq n} a_{n, k} P_{n}^{|k|}(\cos \phi) e^{\sqrt{-1} k \theta}
$$

be the expansion of u as a sum of spherical harmonics $P_{n}^{|k|}(\cos \phi) e^{\sqrt{-1} k \theta}$, where P_{n}^{m} are the Legendre functions. (Note that m is a parameter for the Legendre function, so that $P_{n}^{m}(x)$ is not the m-th power of the Legendre polynomial $P_{n}(x)$.) Find an explicit expression of the surface integral

$$
\iint_{S} u d A
$$

of u in terms of the expansion coefficients $a_{n, k}$.
9. Find a solution of the Poisson equation

$$
\triangle u=x-1
$$

on the cube $[0,1] \times[0,1] \times[0,1]$ such that u vanishes on the boundary of the cube.
10. (a) Find a function u defined on the upper half-sphere

$$
\left\{(x, y, z): x^{2}+y^{2}+z^{2} \leq 1, z \geq 0\right\}
$$

such that

$$
\Delta u=0, \quad u(x, y, 0)=0 \text { if } x^{2}+y^{2} \leq 1
$$

and

$$
u(\sin \phi \cos \theta, \sin \phi \sin \theta, \cos \phi)=2 \cos \phi \text { if } 0 \leq \phi \leq \frac{\pi}{2}, \theta \in \mathbb{R}
$$

(b) (extra credit) Find a function v defined on the upper hemisphere $\left\{(x, y, z): x^{2}+\right.$ $\left.y^{2}+z^{2} \leq 1, z \geq 0\right\}$ such that

$$
\Delta v=0, \quad v(x, y, 0)=0 \text { if } x^{2}+y^{2} \leq 1
$$

and

$$
v(\sin \phi \cos \theta, \sin \phi \sin \theta, \cos \phi)=1 \text { if } 0 \leq \phi<\frac{\pi}{2}, \theta \in \mathbb{R}
$$

Note that the value of the unknown function v at the boundary of the solid halfsphere is discontinuous. Accordingly the meaning of the boundary conditions is to be interpreted somewhat loosely.
11. (a) Find a function $u(x, t)$ defined for all $x \in \mathbb{R}$ and all $t \geq 0$ such that

$$
\frac{\partial u}{\partial t}=2 \frac{\partial u}{\partial x}-u, \quad u(x, 0)=7 e^{-x^{2}} .
$$

[Hint: Let $U(\omega, t)$ be the Fourier transform of $u(x, t)$ in the variable x.]
(b) (extra credit) Try to use the Fourier transform method to find a function $v(x, t)$ defined for all $x \in \mathbb{R}$ and all $t \geq 0$ such that

$$
\frac{\partial v}{\partial t}=2 \frac{\partial v}{\partial x}-v, \quad v(x, 0)=7 x
$$

If you try to carry out a similar computation as in part (a), you will need to either find the Fourier transform of the function $7 x$, or the inverse Fourier transform of $e^{a \sqrt{-1} \omega}$ for some constant a, or both. Either will involve the Dirac δ-function. Note that the usual integral for the Fourier transform of $7 x$ is $\frac{1}{2 \pi} \int_{-\infty}^{\infty} 7 x e^{\sqrt{-1} x \omega} d x$, which is divergent for every $\omega \in \mathbb{R}$.
12. Find a solution of the boundary value problem for the equation

$$
\Delta v+v=0
$$

in a solid sphere of radius 1 , such that the restriction of v to the boundary sphere in spherical coordinates is equal to

$$
\left.v\right|_{r=1}(\phi, \theta)=\sin ^{2}(\phi) \cos (3 \theta) .
$$

