
Bessel functions and Legendre polynomials

§1. Special functions: motivations
The designation “special function” is misleading and slightly derogatory; they should really
be called “useful functions”. Part two of Whittaker–Watson [?] contains twelve families of
“higher transcendental functions”. The updated version [?] of Abramowitz–Stegun [?] treats
31 families of functions.

The special functions we encounter in math 241 include Bessel functions and Legendre func-
tion. We are led to them by the method of separation of variables, the method for finding
explicit solutions of a homogeneous linear PDE with conditions on the boundary of the do-
main of definition of the (unknown) function. Let’s recall the general scheme of this method.

Step 0. Choose a suitable coordinate system. (The symmetry properties of the
boundary often makes the choice pretty obvious.)

Step 1. Look for product solutions, i.e. solutions which are of the form

u(ξ1, . . . , ξm) = φ1(ξ1) · · ·φm(ξm),

where ξ1, . . . , ξm are the coordinates of the (m-dimensional) domain of the unknown
function u(ξ1, . . . , ξm). The condition that such a trial product solution satisfies the
original linear partial differential equation decouples into m linear ordinary differential
equations

Pi(ξi,
d
dξi

)(φi) = µi, i = 1, . . . ,m,

where µ1, . . . , µi are constants. (The process of “separating the variables ξ1, . . . , ξm”
usually impose certain obvious relations among the constants c1, . . . , cm.)

Step 2. Usually some among the ODE’s Pi(ξi,
d
dξi

)(φi) = µi have elementary solutions,
given by formulas involving rational functions, exponential function, logarithms, and
trigonometric functions.

Step 3. In favorable situations, the general solutions of the rest of the linear ODE’s
are given by formulas involving special functions.

Step 4. Often part of the boundary conditions of the original PDE (and the pe-
riodicity conditions of the coordinates) gives further constraints on the parameter
µ = (µ1, . . . , µm), leaving only a discrete but possibly countably infinite set of per-
missible parameters µj, j = 1, 2, . . .. Each of these parameters µj corresponds to a
product solution fj. So every infinite series

∑∞
j=1 bj fj which is convergent in a suitable

sense, satisfies the original linear PDE and part of the boundary conditions.

Step 5. Choose the coefficients bj of fj so that the infinite series u =
∑∞

j=1 bj fj
converge and satisfies all boundary conditions.

Special functions appear in step 3 above.
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Further readings on PDE.

• If you would like to understand more about partial differential equations, how they
arize through the principle of least action and they are tied with spectral theory, you
cannot go wrong with volume 1 of Courant–Hilbert [?], a true classic.

• Also recommended is [?], the last of the famous six-term series of lectures by a Nobel
laureate in physics.

• For the goal of finding analytic formulas of solutions of linear partial differential equa-
tions which appear in many questions in physics and engineering, the standard refer-
ences are [?] and [?].

• The book [?] covers materials of this course at a higher level.

Further readings on Special functions.

• Whittaker–Watson [?] is a classic in the old British style. Exercises form an integral
part of the book; you gain proficiency as you knock them out one by one. Also
recommended are the highly readable books [?] and [?].

• The manuscript project [?, ?, ?], Abramowitz–Stegun [?] and its updated version [?]
are standard handbook-style references. The latter is available online from the NIST
website https://dlmf.nist.gov.

References for Bessel functions.

1. For a connected account of the theory of Bessel functions in a book chapter, [?, Ch. 17],
[?, §19], [?, Ch 7, §2] and [?, Ch 5] are good sources. Basic complex function theory is
freely used in all of them, which you can learn in [?, Ch. 5–6].

2. The handbooks [?, Ch. 7], [?, Ch. 9–10], [?, Ch. 10] are good sources for a quick con-
sultation.

3. The monumental tome [?] with 804 pages is referred to in every treatment of Bessel
functions.

§2. Bessel functions
(2.1) The Bessel functions discussed in this note include

• Jν(z) (Bessel functions of the first kind), and their close relatives

• Yν(z) (Bessel functions of the second kind, or Weber’s function),

• H(1)
ν (z), H

(2)
ν (z) (Hankel’s functions), and
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• Iν(z), Kν(z) (modified Bessel functions, or Bessel functions of imaginary argument).

They are best understood as holomorphic functions indexed by a parameter ν ∈ C on a
branched cover of C branched over the point z = 0. In this note we will consider them as
holomorphic functions on C r (−∞, 0], where their principal values are evalued using the
principal branch of log z on Cr (−∞, 0]. Recall that the principal branch of log z on Cr{0}
so that the phase of the principal values of log z are (−π, π] for all z 6= 0. For z ∈ Cr(−∞, 0]
we have

log z = log |z|+
√
−1 ph(z), ph(z) ∈ (−π, π) ∀ z ∈ Cr (−∞, 0].

Bessel functions of the same order ν are related to each other by

H(1)
ν (z) = Jν(z) +

√
−1Yν(z), H(2)

ν (z) = Jν(z)−
√
−1Yν(z) (2.1.1)

Iν(z) =

{
e−νπ

√
−1/2 Jν(z e

π
√
−1/2) if − π < ph(z) < π/2

eνπ
√
−1/2 Jν(z e

−π
√
−1/2) if − π/2 < ph(z) < π

(2.1.2)

Kν(z) =

{
π
√
−1

2
eνπ
√
−1/2H

(1)
ν (z eπ

√
−1/2) if − π < ph(z) < π/2

−π
√
−1

2
e−νπ

√
−1/2H

(2)
ν (z e−

√
−1/2) if − π/2 < ph(z) < π

(2.1.3)

For every ν ∈ C, Jν(z), Yν(z) and H
(1)
ν (z), H

(2)
ν (z) are two bases of solutions of Bessel’s

differential equation of order ν(
(z d

dz
)2 + z2

)
u− ν2u =

(
z2 d2

dz2
+ z d

dz
+ z2

)
u− ν2u = 0 , (2.1.4)

while Iµ(z), Kν(z) is a bases of solutions of the modified Bessel equation of order ν(
(z d

dz
)2 − z2

)
w − ν2w =

(
z2 d2

dz2
+ z d

dz
− z2

)
w − ν2w = 0 . (2.1.5)

Remark Equation (2.1.4) for Jν(z), Kν(z) implies that for every fixed ν ∈ R, both Jν(az)
and Yν(ax) and eigenfunctions for the Sturm–Liouville equation[

d
dx

(
x d
dx

)
− ν2

x
+ λx

]
u = 0 (2.1.6)

with eigenvalue λ = a2, for every a ∈ R. Similarly every fixed ν ∈ R, both Iν(az) and
Kν(ax) and eigenfunctions for the Sturm–Liouville equation[

d
dx

(
x d
dx

)
+ ν2

x
+ λx

]
u = 0 (2.1.7)

with eigenvalue λ = a2, for every a ∈ R.

3



(2.2) Definitions of Bessel functions

The Bessel function of first kind Jν(z) is the product of zν times an even entire function:

Jν(z) := ( z
2
)ν

∞∑
k=0

(−1)k
(z/2)2k

k! Γ(ν + k + 1)!
if ν 6∈ Z,

Jn(z) :=
∞∑
k=0

(−1)k
(z/2)n+2k

k! (n+ k)!
if n ∈ N,

Jn(z) :=
∞∑
k=0

(−1)k−n
(z/2)−n+2k

k! (n+ k)!
= (−1)nJ−n(z) if − n ∈ N.

(2.2.1)

Note that if ν 6∈ Z, then Jν(z), J−ν(z) is a basis of the solution of Bessel’s differential equation
(2.1.4). Clearly

Jn(−z) = (−1)nJn(z) = J−n(z) ∀n ∈ N, ∀ z ∈ C. (2.2.2)

Recall that the Gamma function Γ(z) is a meromorphic function on C such that Γ(z)−1 is an
entire function which has simple zeros at every non-positive integer and non-zero elsewhere.
We have

Γ(z) =

{∫∞
0
e−ttz dt

t
if Re(z) > 0

Γ(z+m)
z(z+1)···(z+m−1)

if−m < Re(z) < 0, m ∈ N>0

(2.2.3)

for every z ∈ C which is not a non-positive integer. The following identities are satisfied.

Γ(z + 1) = zΓ(z),

Γ(z) Γ(1 = z) =
π

sin(πz)
,

22z−1Γ(z)Γ(z + 1
2
) =
√
π Γ(2z).

(2.2.4)

In addition we have
Γ(n+ 1) = n! ∀n ∈ N, Γ(1/2) =

√
π . (2.2.5)

The functions Yν(z) are defined by

Yν(z) :=
Jν(z) cos(νπ)− J−ν(z)

sin(νπ)
if ν 6∈ Z,

Yn(z) := lim
ν→n

Yν(z) =
1

π

∂Jν(z)

∂ν

∣∣∣
ν=n

+
(−1)n

π

∂Jν(z)

∂ν

∣∣∣
ν=−n

if n ∈ Z.
(2.2.6)

For each n ∈ N, one gets an explicit series expansion of Yn(z):

Yn(z) =
2

π
Jn(z) log(z/2)− 1

π

n−1∑
k=0

(n− k − 1)!

k!

(z
2

)2k−n

+
1

π

∞∑
k=0

(−1)k(z/2)n+2k

k!(n+ k)!
[ψ(k + 1) + ψ(k + n+ 1)] , (2.2.7)
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where

ψ(z) :=
Γ′(z)

Γ(z)
(2.2.8)

is the logarithmic derivative of Γ(z). When n = 0, the sum 1
π

∑n−1
k=0

(n−k−1)!
k!

(
z
2

)2k−n
in

(2.2.7) is understood to be 0. Note that z = 0 is a singular point of Yn(z) for every n ∈ Z.

The functions H
(1)
ν , H

(2)
ν are defined by (2.1.1). We also have

Jν(z) = 1
2

(
H(1)
ν +H(2)

ν

)
, Yν(z) = −

√
−1

2

(
H(1)
ν −H(2)

ν

)
. (2.2.9)

The modified Bessel function Iν(z) is defined by

Iν(z) := ( z
2
)ν

∞∑
k=0

(z/2)2k

k! Γ(ν + k + 1)!
∀ z ∈ Cr (−∞, 0] (2.2.10)

for all ν ∈ C. It extends to an entire function on C if ν ∈ Z:

In(z) = I−n(z) =
∞∑
k=0

(z/2)n+2k

k! (n+ k)!
∀n ∈ N . (2.2.11)

For ν 6∈ Z, the modified Bessel function Kν(z) on Cr (−∞, 0] is defined by

Kν(z) :=
π

2

I−ν(z)− Iν(z)

sin(νπ)
z ∈ Cr (−∞, 0] . (2.2.12)

For n ∈ Z, Kn(z) extends to an entire function on C, with

Kn(z) := lim
ν→n

Kν(z) ∀ z ∈ C. (2.2.13)

It is clear from 2.2.12 that
K−ν(z) = Kν(z) ∀ ν. (2.2.14)

(2.3) Generating functions for Jν(z) and Iν(z)

Many properties of Bessel functions with integral order Jn(z), In(z) becomes transparent
throught their generating functions:

ez(t−t
−1) =

∑
n∈Z

Jn(z)tn,

ez(t+t
−1) =

∑
n∈Z

In(z)tn.
(2.3.1)
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(2.4) Bessel functions of half-integral order

The Bessel functions Jν(z), Yν(z), H
(1)
ν (z), H

(2)
ν (z), Iν(z), Kν(z) can be expressed in terms of

elementary functions when ν is a half-integer. For example

J1/2(z) =
(

2
π z

)1/2
sin z, (2.4.1)

J−1/2(z) =
(

2
π z

)1/2
cos z. (2.4.2)

Using recurrence relations we can get expressions for all Jν(z) with ν = n+ 1
2

for some n ∈ N.
For instance

J
n+

1
2
(z) = (−1)n

(
2
π

)1/2
zn+

1
2
(
z−1 d

dz

)n sin z

z
, n = 0, 1, 2, . . . (2.4.3)

(2.5) Recurrence relations

Denote by Cν(z) any of the four Bessel functions Jν(z), Yν(z), H
(1)
ν (z), H

(1)
ν (z). We have

Cν−1(z) + Cν+1(z) =
2ν

z
Cν(z), (2.5.1)

Cν−1(z)− Cν+1(z) = 2 d
dz

Cν(z) if ν 6= 0

−C1(z) = d
dz

C0(z)
(2.5.2)

(
z−1 d

dz

)[
zνCν(z)

]
= zν−1Cν−1(z) (2.5.3)(

z−1 d
dz

)[
z−νCν(z)

]
= −z−ν−1Cν+1(z) . (2.5.4)

The functions Iν(z), Kν(z) satisfy similar recurrence relations with different signs at places.

Iν−1(z)− Iν+1(z) =
2ν

z
Iν(z), Iν−1(z) + Iν+1(z) = 2 d

dz
Iν(z), (2.5.5)(

z−1 d
dz

)[
zνIν(z)

]
= zν−1Iν−1(z),

(
z−1 d

dz

)[
z−νIν(z)

]
= z−ν−1Iν+1(z) . (2.5.6)

Kν−1(z)−Kν+1(z) = −2ν

z
Kν(z), Kν−1(z) +Kν+1(z) = −2 d

dz
Kν(z), (2.5.7)(

z−1 d
dz

)[
zνKν(z)

]
= −zν−1Kν−1(z),

(
z−1 d

dz

)[
z−νKν(z)

]
= −z−ν−1Kν+1(z) . (2.5.8)

(2.6) Connection formulas

Besides (2.1.1)–(2.1.3), we have

C−n(z) = (−1)n Cn(z) (2.6.1)

for all n ∈ Z, where Cn(z) denote any one of Jn(z), Yn(z), H
(1)
n (z), H

(2)
n (z) as in 2.5, and

H
(1)
−ν (z) = eνπ

√
−1H(1)

ν (z),

H
(2)
−ν (z) = e−νπ

√
−1H(2)

ν (z).
(2.6.2)

6



(2.7) Asymptotics of Bessel functions as z → 0

We see from (2.2.1) and (2.2.10) that

Jn(z) = (−1)nJ−n(z) ∼ zn

2n · n!
as z → 0, n ∈ N , (2.7.1)

and

In(z) = I−n(z) ∼ zn

2n · n!
as z → 0, n ∈ N . (2.7.2)

Similarly the series expansion (2.2.7) implies that

Y0(z) ∼ 2
π

log z as z → 0 , (2.7.3)

Yn(z) = (−1)nY−n(z) ∼ −2n(n−1)!
π

z−n as z → 0, n ∈ N≥1 , (2.7.4)

and (2.2.13) implies that
K0(z) ∼ log(2

z
) as z → 0 , (2.7.5)

Kn(z) = K−n(z) ∼ (2n−1(n− 1)!) · z−n as z → 0, n ∈ N≥1 . (2.7.6)

(2.8) Integral representations of Bessel functions

Bessel functions have many integral representations, each with some restriction on the pair
(ν, z). We give a few examples. First we have

Jn(z) =
1

π

∫ π

0

cos(z sin θ − nθ) dθ, n ∈ Z, (2.8.1)

For z with Re(z) > 0, we have contour integral representations

Jν(z) =
1

2π
√
−1

∫ ∞+π
√
−1

∞−π
√
−1

ez sinh t−νt dt, (2.8.2)

and

H(1)
ν =

1

π
√
−1

∫ ∞+π
√
−1

−∞
ez sinh t−νt dt,

H(2)
ν = − 1

π
√
−1

∫ ∞−π√−1

−∞
ez sinh t−νt dt.

(2.8.3)

(2.9) Asymptotic behavior of Bessel functions as z →∞
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When ν is fixed and z →∞, for every δ > 0 we have

Jν(z) =
√

2/(πz)
(

cos
(
z − 1

2
νπ − 1

4
π
)

+ e|Im(z)|o(1)
)
,

Yν(z) =
√

2/(πz)
(

sin
(
z − 1

2
νπ − 1

4
π
)

+ e|Im(z)|o(1)
)
,

H(1)
ν (z) =

√
2/(πz) e

√
−1
(
z−1

2
νπ−1

4
π
)(

1 + o(1)
)
,

H(2)
ν (z) =

√
2/(πz) e−

√
−1
(
z−1

2
νπ−1

4
π
)(

1 + o(1)
)
,

(2.9.1)

uniformly for all z ∈ Cr (−∞, 0] with |ph(z)| ≤ π − δ.

The asymptotic behavior of the modified Bessel functions Iν(z), Kν(z) are obtained from
(2.9.1) by substitutions via (2.1.2) and (2.1.3) respectively. In particular we have

Iν(x) = 1
2πx

ex
(
1 + o(1)

)
,

Kν(x) = π
2x
e−x

(
1 + o(1)

)
,

as x→∞, x ∈ R. (2.9.2)

for every ν ≥ 0.

(2.10) Zeroes of Bessel functions Jν(z), J ′ν(z), Yν(z), Y ′ν(z) with ν ∈ R

The zeros of any Bessel function or its derivative are simple, with the possible exception of
z = 0, because the Bessel differential equation is regular on Cr {0}.

When ν ∈ R, each of Jν(z), J ′ν(z), Yν(z), Y ′ν(z) has an infinite number of positive zeros. Let

jν,1 < jν,2 < jν,3 · · · , j′ν,1 < j′ν,2 < j′ν,3 < · · ·

be the list of positive zeros of Jν(z) and J ′ν(z) respectively, except that when ν = 0, we count
z = 0 as the first “positive zero” of J ′0(z), so that

j′0,1 = 0, j′0,m = j1,m for m = 1, 2, 3, . . . .

Similarly let
yν,1 < yν,2 < yν3 · · · , y′ν,1 < y′ν,2 < y′ν,3 < · · ·

be the list of positive zeros of Yν(z) and Y ′ν(z) respectively

The positive zeros of Jν(z) and Jν+1(z) interlace, and so do the positive zeros of Yν(z) and
Yν+1(z), for every ν ≥ 0:

jν,1 < jν+1,1 < jν,2 < jν+1,2 < jν,3 < · · · ,
yν,1 < yν+1,1 < yν,2 < yν+1,2 < yν,3 < · · · .

(2.10.1)
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The positive zeros of J ′ν(z), Yν(z), Y ′ν(z), Jν(z) with the same order ν ≥ 0 interlace according
to the following inequalities:

ν ≤ j′ν,1 < yν,1 < y′ν,1 < jν,1 < j′ν,2 < yν,2 < y′ν,2 < jν,2 < j′ν,3 < · · · . (2.10.2)

It follows from (2.9.1) that

jν,n = πn(1 + o(1)) as n→∞,
yν,n = πn(1 + o(1)) as n→∞,

(2.10.3)

for every ν ≥ 0. The inequalities (2.10.2) implies that

j′ν,n = πn(1 + o(1)) as n→∞,
y′ν,n = πn(1 + o(1)) as n→∞

(2.10.4)

as well.

Remark (a) If ν ≥ −1, then all zeros of Jν(z) are real. If ν ≥ 0, then all zeros of J ′ν(z) are
real.
(b) If ν < −1 and ν is not an integer, Jν(z) has exactly b−νc pairs of complex conjugate
zeros.

(2.11) Orthogonality relations

Let ν ≥ −1
2

be a real number. For any two distinct non-zero real numbers α, β, the functions
uα(x) := Jν(αx), uβ(x) := Jν(βx) satisfy

d
dx

(
x(uαu

′
β − uβu′α)

)
= (α2 − β2)xuαuβ,

and we get ∫ 1

0

xJν(αx)Jν(βx) dx =
βJν(α)J ′ν(β)− αJν(β)J ′ν(α)

α2 − β2
. (2.11.1)

Let α, β be two distinct positive zeros jν,m of Jν(x), it follows that∫ 1

0

xJν(jν,mx)Jν(jν,nx) dx = 0 if m 6= n. (2.11.2)

Take the limit as β → α in (2.11.1) using L’Hospital’s rule and eliminate J ′′ν with Bessel’s
differential equation, we get∫ 1

0

xJ2
ν (jν,nx) dx = 1

2
(J ′ν(jν,n))2 = 1

2
J2
ν+1(jν,n). (2.11.3)
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(2.11.4) Proposition (Fourier{Bessel expansion) Let ν ≥ −1/2 be a real number.
Let f(x) be a piecewise continuous function on (0, 1) such that∫ 1

0

x1/2 |f(x)| dx <∞

and f(t) is of bounded variation in every interval [a, b] with 0 < a < b < 1. Define numbers
cm by

cm :=
2

J2
ν+1(jν,m)

∫ 1

0

x f(x) Jν(jν,mx) dx, m ≥ 1.

Then

1
2

(
f(x−) + f(x+)

)
=

∞∑
m=1

cm Jν(jν,mx) .

(2.11.5) Proposition (Fourier{Bessel integral) Let ν ≥ −1/2 be a real number.
Let f(x) be a piecewise continuous funtion on (0,∞) and of bounded variation on every
finite subinterval [a, b] with 0 < a < b <∞. Assume that∫ ∞

0

x1/2 |f(x)| dx <∞.

Then for every x ∈ (0,∞) we have

1
2

(
f(x−) + f(x+)

)
=

∫ ∞
0

λJν(λx) dλ

∫ ∞
0

ρJν(ρx)f(ρ) dρ .

§3. Legendre functions and spherical harmonics
(3.1) The Legendre polynmials Pn(x) form one of many families of orthogonal polynomials.
We can use Pn(x) and its associated Legendre functions Pm

n (x), m ∈ N, to write down an ex-
plicit basis of harmonic polynomials homogeneous of degree n in 3 variables, i.e. polynomials
f(x, y, z) homogeneous of degree n such that ∆f = 0.

There are more general Legendre functions Pν(z), Qν(z) where the parameter ν can be
any complex number, and their associated Legendre functions Pm

ν (z), Qm
ν (z), m ∈ N. They

are also called spherical harmonics in the literature.

Perhaps the best motivation of Legendre polynomials is through their generating functions.
We will use vector notations in R3, and let r = (x, y, z), and let r0 = (x0, y0, z0) be a fixed
point in R3 which is different from the origin. It is well-known that 1

|r−r0| is a harmonic

function on R3 r {0}. Let θ be the angle between r and r0, let t := |r|
|r0| , and let φ be the

angle of (x, y) so that

x = |r0| t sin θ cosφ, y = |r0| t sin θ sinφ, z = |r0| t cos θ,
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and
1

|r− r0|
=

1

|r0|
· 1

1− 2t cos θ + t2
. (3.1.1)

The Laplacian in coordintes1 (t, θ, φ) is

4 =
1

|r0|2 t2 sin θ
·
[ ∂
∂t

(
t2
∂

∂t

)
+

∂

∂θ

(
sin θ

∂

∂θ

)
+

∂

∂φ

( 1

sin θ

∂

∂φ

)]
(3.1.2)

Let w := cos θ. In the coordinate system (t, w, φ), we have

∂

∂θ
= − sin θ

∂

∂w
,

∂2

∂θ2
= −w ∂

∂w
+ (1− w2)

∂

∂w2
.

Define polynomials Pn(w), n ∈ N, by

1

1− 2tw + t2
=
∞∑
n=0

Pn(w)tn. (3.1.3)

The fact that 4 1
1−2tw+t2

= 0 translates into[(
(1− w2) d

dw

)2
+ n(n+ 1)(1− w2)

]
Pn(w) = 0, ∀n ∈ N. (3.1.4)

References for Legendre functions: [?, Ch. 4 & Ch. 8], [?, Ch. 10], [?, Ch. 14], [?, Ch. 3], [?,
Ch. 7, §§3–5], [?, Ch. 14].

(3.2) Definitions and the differential equations they satisfy

The Legendre polynomials can be defined either directly, or via their generating function
(1− 2xt+ t2)−1/2.

Pn(x) := 1
2n n!

dn

dxn
(x2 − 1)n

=
1

2n n!

n∑
k=dn/2e

(−1)n−k
(
n

k

)
(2k)!

(2k − n)!
x2k−n

(1− 2xt+ t2)−1/2 =
∑
n≥0

Pn(x) tn .

(3.2.1)

The parameter n here is called either the degree of the order.

The associated Legenedre functions of integer order n are defined by

Pm
n (x) := (1− x2)m/2 dm

dxm
Pn(z) = (1− x2)m/2

dm+n

dxm+n
(x2 − 1)n, m ∈ N (3.2.2)

The superscrip m in Pm
n (x) is a parameter, and Pm

n (x) is not the m-th power of Pn(x).
Clearly

P 0
n(x) = Pn(x), Pm

n (x) = 0 ∀m > n. (3.2.3)

1Here we have followed the convention that θ denotes the angle to the norht-south pole, as in the majority
of literature in physics in Engineering. However in the most calculus textbooks, this angle is denoted by φ.

11



Examples.

P0(x) = 1, P1(x) = x,

P2(x) = 3
2
x2 − 1

2
, P3(x) = 5

2
x3 − 3

2
x,

P4(x) = 35
8
x4 − 15

4
x2 + 3

8
, P5(x) = 63

8
x5 − 35

4
x3 + 15

8
x.

It is clear that deg(Pn(x)) = n and Pn(−x) = (−1)nPn(x), for every n ∈ N.

The Legendre polynomial Pn(x) is a solution of the differential equation

d

dx

(
(1− x2)

du

dx

)
+ n(n+ 1)u = 0, (3.2.4)

or equivalently [(
(1− x2) d

dx

)2
+ n(n+ 1)(1− x2)

]
u = 0, (3.2.5)

while the associated Legendre function Pm
n (x) is a solution of the differential equatin[(

(1− x2) d
dx

)2
+ n(n+ 1)(1− x2)−m2

]
u = 0. (3.2.6)

In other words, the Legendre function Pm
n (x) with m,n ∈ N and 0 ≤ m ≤ n is an eigenfunc-

tion for the Sturm–Liouville equation[
d
dx

(
(1− x2) d

dx

)
− m2

1−x2 + λ
]
u = 0 (3.2.7)

with eigenvalue λ = n(n+ 1).

(3.3) Recurrence relations

Taking the logarithmic derivative of the generating function (1−2xt+t2)−1/2 of the Legendre
polynomials with respect to t and to x leads to a number of recurrence relations.

(n+ 1)Pn+1(x)− (2n+ 1)xPn(x) + nPn−1(x) = 0 ∀n ∈ N, (3.3.1)

P ′n+1(x)− 2xP ′n(x) + P ′n−1(x) = Pn(x) ∀n ≥ 1, (3.3.2)

P ′n+1(x)− xP ′n(x) = (n+ 1)Pn(x) ∀n ≥ 0,

xP ′n(x)− P ′n−1(x) = nPn(x) ∀n ≥ 1,

P ′n+1(x)− P ′n−1(x) = (2n+ 1)Pn(x) ∀n ≥ 1,

(3.3.3)

(
(1− x2)

d

dx

)
Pn(x) = nPn−1(x)− nxPn(x) ∀n ≥ 1. (3.3.4)
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(3.4) Orthogonality relations
The Legendre polynomials are mutually orthogonal as elements of the Hilbert space

L2([−1, 1]) consisting of all square integrable functions on [−1, 1].∫ 1

−1

Pn(x)Pm(x) dx =

{
0 if m 6= n,

2
2n+1

if m = n.
(3.4.1)

The fact that
∫ 1

−1
Pn(x)Pm(x) dx = 0 for m 6= n is a special case of the general orthogonal-

ity relation between eigenfunctions assocated to different eigenvalues in a Sturm–Liouville
differential equation.

Proof. We start from the differential equation (3.2.4) for Pn(x) and Pm(x). An easy
calculation yields

(n−m)(n+m+ 1)Pn(x)Pm(x) = d
dx

[
(1− x2)(P ′m(x)Pn(x)− Pm(x)P ′n(x))

]
, (3.4.2)

which implies that

(n−m)(n+m+ 1)

∫ 1

−1

Pn(x)Pm(x) dx = 0.

To show that
∫ 1

−1
Pn(x)2 dx = 2

2n+1
, from the generating function for the Pn(x)’s, we get∫ 1

−1

dx

1− 2xt+ t2
=

∞∑
m=0

∞∑
n=0

∫ 1

−1

Pm(x)Pn(x) dx · tm+n =
∞∑
n=0

∫ 1

−1

Pn(x)2 dx · t2n.

An elementary calculation shows that∫ 1

−1

dx

1− 2xt+ t2
= − 1

2t
log (1−t)2

(1+t)2
=
∞∑
n=0

2t2n

2n+ 1
.

More generally, we have the following orthogonality relations for Legendre functions.∫ 1

−1

Pm
l (x)Pm

n (x) dx = δl,n
(n+m)!

(n−m)! (n+ 1
2
)
, (3.4.3)

∫ 1

−1

P l
n(x)Pm

n (x)

1− x2
dx = δl,m

(n+m)!

(n−m)!m
. (3.4.4)

(3.4.5) Proposition For every n ∈ N, the polynomial Pn(x) of degree n has n distinct
zeros in the open interval (−1, 1).

This proposition is a special case of a general fact about orthogonal polynomials.
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(3.4.6) Proposition The orthogonal polynomials {Pn(x) | n ∈ N} form a complete or-
thogonal basis of L2([−1, 1]). In other words for every square integralbe R-valued function
f(x) ∈ L2([−1, 1]), the equality

f(x) =
∑
n∈N

Pn(x) · 2n+1
2

∫ 1

−1

f(t)Pn(t) dt

holds in L2[−1, 1] in the sense that

lim
N→∞

∫ 1

−1

[
f(x)−

N∑
n=0

Pn(x) · 2n+1
2

∫ 1

−1

f(t)Pn(t) dt
]2

dx = 0.

(3.5) Integral representations of Legendre polynomials

Pn(x) =
1

π

∫ π

0

(x+
√
x2 − 1)n dφ. (3.5.1)

Pn(cos θ) =
2

π

∫ θ

0

cos(n+ 1
2
)ψ

√
2 cosψ − 2 cos θ

dψ 0 < θ < π, n ∈ N. (3.5.2)

The following bounds on the values of Pn(x) can be established with the help of the integral
representations above.

(3.5.3) Proposition For every x ∈ (−1, 1) and every integer n ≥ 1, we have

|Pn(x)| < 1

and also

|Pn(x)| <
[ π

2n(1− x2)

]1/2

.

(3.6) Asymptotic representation of Legendre polynomials Pn(x) for n� 0

Pn(cos θ) ∼
√

2
πn sin θ

sin
[
(n+ 1

2
)θ + π

4

]
, n→∞, δ ≤ θ ≤ π − δ (3.6.1)

for any δ > 0. In other words, for every δ > 0 and every ε > 0, there exists a natural number
N0 such that

−ε < Pn(cos θ)
√
πn sin θ

√
2 sin
[

(n+
1
2

)θ+
π
4

] − 1 < ε ∀n ≥ N0, ∀ θ ∈ [δ, π − δ].
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(3.7) Spherical functions

Let 4S2 be the Laplacian on the unit sphere. In spherical coordinate (θ, φ), 0 ≤ θ ≤ π,
0 ≤ φ ≤ 2π, 4S2 is given by

4S2 =
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂

∂φ2
. (3.7.1)

The eigenvalues of the equation
(4S2 + λ)u = 0

are
λ = n · (n+ 1), n ∈ N.

For each n ∈ N, a basis of the solutions of

(4S2 + n(n+ 1))u = 0

is given by Y k
n (θ, φ), k = 0,±1, . . . ,±n,

Y k
n (θ, φ) =

{
P k
n (cos θ) cos(kφ) if k ≥ 0,

P−kn (cos θ) sin(−kφ) if k < 0.
(3.7.2)

The spherical functions Y k
n with n ∈ N and |k| ≤ n form an orthogonal basis of the Hilbert

space L2(S2) of all square integrable functions on the unit sphere S2, and we get from 3.4.3
that ∫ π

θ=0

∫ 2π

φ=0

Y k
n (θ, φ)2 sin θ dφ dθ =

{
4π

2n+1
if k = 0,

2π
2n+1

(n+|k|)!
(n−|k|)! if 1 ≤ |k| ≤ n.

(3.7.3)
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