Supplements on Fourier series

§1. Convergence theorems and the Parseval identity

(1.1) Periodic functions as functions on $\mathbb{R} / 2 L \mathbb{Z}$.

Let $L>0$ be a positive integer, and we will consider periodic functions with period $2 L$ on \mathbb{R}, i.e. functions $g(x)$ on \mathbb{R} such that $g(x+2 L)=g(x)$ for all $x \in \mathbb{R}$. If we identify any two points of \mathbb{R} which differ from each other by an integer multiple of $2 L$, the resulting space $\mathbb{R} / 2 L \mathbb{Z}$ is essentially the same as a circle. The function $x \mapsto e^{\frac{\pi \sqrt{-1} x}{L}}$ gives an explicit identification. Every periodic function with period $2 L$ is really a function on $\mathbb{R} / 2 L \mathbb{Z}$.

Given any $a \in \mathbb{R}$, the corresponding point on $\mathbb{R} / 2 L \mathbb{Z}$ will be denoted by $a \bmod 2 L$. Note that for every $b \in \mathbb{R}$ such that $b-a$ is an integer multiple of $2 L, b \bmod 2 L$ is equal to $a \bmod 2 L$. If $b-a$ is an integer multiple of $2 L$, we say that a and b are congruent modulo $2 L$ and write $b \equiv a(\bmod 2 L)$ for this relation.

Point-wise convergence of Fourier series is a complicated business, The Fourier series associated to a continuous periodic function may not converge; there are examples of a continuous periodic function $f(x)$ whose Fourier series diverges at uncoutably many points. However all functions you will meet in math 241 are piece-wise smooth (but not necessarily continuous). I will state two propositions for your peace of mind.
(1.2) Definition A function defined on a finite interval [$a, b], a<b$ is said to be of bounded variation if there exists a number $C>0$ such that for every finite sequence $a \leq x_{1}<x_{2}<$ $\cdots<x_{m} \leq b$ we have

$$
\sum_{k=1}^{m-1}\left|f\left(x_{m+1}\right)-f\left(x_{m}\right)\right|<C
$$

A periodic function of period $2 L, L>0$, is said to be of bounded variation if its restriction to a period (e.g. $[-L, L]$) is of bounded variation.
(1.3) Remark (a) It is obvious that every piece-wise continuously differentiable function on a finite interval $[a, b]$ is of bounded variation. A fortiori, every piece-wise smooth function on a finite interval is of bounded variation.
(b) It is equally obvious that every non-decreasing \mathbb{R}-valued function on $[a, b]$ is of bounded variation. It is equally clear that every non-increasing \mathbb{R}-valued function on $[a, b]$ is of bounded variation.
(c) It is a fact that every function f of bounded variation on a finite interval $[a, b]$ is a sum of a non-decreasing function g_{1} and a non-increasing function g_{2}. It follows that for every \mathbb{R}-valued function f of bounded variation on a finite interval $[a, b]$ and every $x \in(a, b)$, both one-sided limits $\lim _{t \rightarrow x+} f(t)$ and $\lim _{t \rightarrow x-} f(t)$ exist. Denote the two limits by $f(x+)$ and $f(x-)$ respectively.
(1.4) Proposition Let $f(x)$ be a periodic function of bounded variation with period $2 L$. Let $\sum_{n \in \mathbb{Z}} \hat{f}(n) e^{\frac{\pi \sqrt{-1} n x}{L}}$ be the Fourier series attached to $f(x)$, where

$$
\hat{f}(n):=\frac{1}{2 L} \int_{-L}^{L} f(t) e^{\frac{-\pi \sqrt{-1} n t}{L}} d t
$$

For every $x_{0} \in \mathbb{R}$, the series

$$
\sum_{n \in \mathbb{Z}} \hat{f}(n) e^{\frac{\pi \sqrt{-1} n x_{0}}{L}}
$$

converges, and

$$
\sum_{n \in \mathbb{Z}} \hat{f}(n) e^{\frac{\pi \sqrt{-1} n x_{0}}{L}}=\frac{f\left(x_{0}+\right)+f\left(x_{0}-\right)}{2}
$$

(1.5) Proposition Let f be be a periodic function on \mathbb{R} of bounded variation with period $2 L$. Let $\sum_{n \in \mathbb{Z}} \hat{f}(n) e^{\frac{\pi \sqrt{-1} n x}{L}}$ be the Fourier series attached to $f(x)$. Define a periodic function g with period $2 L$ on \mathbb{R} by

$$
g(x)=\int_{-L}^{x}(f(t)-\hat{f}(0)) d t=\int_{-L}^{x} f(t) d t-\hat{f}(0) \cdot(x+L), \quad \forall x \in \mathbb{R} .
$$

Then

$$
g(x)=\sum_{0 \neq n \in \mathbb{Z}} \hat{f}(n) \int_{-L}^{x} e^{\frac{\pi \sqrt{-1} n t}{L}} d t=\sum_{0 \neq n \in \mathbb{Z}} \frac{\hat{f}(n)}{\pi \sqrt{-1} n}\left[e^{\frac{\pi \sqrt{-1} n x}{L}}-(-1)^{n}\right]
$$

for all $x \in \mathbb{R}$.
(1.6) Proposition (Parseval identity) Let $f(x), g(x)$ be square integrable ${ }^{1}$ periodic functions on \mathbb{R} with period $2 L$. Let $\hat{f}(n), \hat{g}(n), n \in \mathbb{Z}$, be the Fourier coefficients of f and g respectively:

$$
\hat{f}(n)=\frac{1}{2 L} \int_{-L}^{L} f(x) e^{\frac{\pi \sqrt{-1} n x}{L}} d x, \quad \hat{g}(n)=\frac{1}{2 L} \int_{-L}^{L} g(x) e^{\frac{\pi \sqrt{-1} n x}{L}} d x
$$

(a) $\frac{1}{2 L} \int_{-L}^{L} f(x) \overline{g(x)} d x=\sum_{n \in \mathbb{Z}} \hat{f}(n) \overline{\hat{g}(n)}$
(b) $\frac{1}{2 L} \int_{-L}^{L}|f(x)|^{2} d x=\sum_{n \in \mathbb{Z}}|\hat{f}(n)|^{2}$

[^0]Example. Let f be the periodic function with period 1 such that

$$
f(x)=x \quad \forall x \in\left(-\frac{1}{2}, \frac{1}{2}\right) .
$$

The n-th Fourier coefficient of f is

$$
\hat{f}(n)=\int_{-1 / 2}^{1 / 2} x e^{-2 \pi \sqrt{-1} n x} d x=-\left.\frac{1}{2 \pi \sqrt{-1} n} x e^{-2 \pi \sqrt{-1} n x}\right|_{x=-1 / 2} ^{x=1 / 2}=\frac{1}{2 \pi \sqrt{-1} n}(-1)^{n+1}
$$

if $n \neq 0$, and

$$
\hat{f}(0)=0
$$

Since

$$
\int_{-1 / 2}^{1 / 2} x^{2} d x=\frac{1}{12}
$$

the equality

$$
\sum_{n \in \mathbb{Z}} \hat{f}(n)^{2}=\int_{-1 / 2}^{1 / 2} f(x)^{2} d x
$$

becomes

$$
\frac{1}{2 \pi^{2}} \sum_{n=1}^{\infty} n^{2}=\frac{1}{12}
$$

which simplifies to

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{2}=\frac{\pi^{2}}{6} \tag{1.6.1}
\end{equation*}
$$

Finally we state a theorem of Fejér on Fourier series of continuous periodic functions.
(1.7) Proposition Let f be a continuous periodic function on \mathbb{R} with period $2 L$. For each positive integer n, denote by S_{n} the n-th partial sum

$$
\begin{equation*}
S_{n}(x)=\sum_{|k| \leq n} \hat{f}(n) e^{\frac{\pi \sqrt{-1} n x}{L}} \tag{1.7.1}
\end{equation*}
$$

of the Fourier series of f. Then the arithmetic means

$$
\frac{1}{n}\left(S_{0}+S_{1}+\cdots+S_{n-1}\right)
$$

of the partial sums converge uniformly to f. In other words, for every $\epsilon>0$, there exists a positive integer N_{0} such that

$$
\left|f(x)-\frac{1}{n}\left(S_{0}(x)+S_{1}(x)+\cdots+S_{n-1}(x)\right)\right|<\epsilon, \quad \forall n \geq N_{0}, \forall x \in \mathbb{R}
$$

§2. Term-by-term differentiation of Fourier series

We give an account of term-by-term differentiation of Fourier series using a very small part of the theory of generalized function. See [?, Ch. 4] for more information about generalized periodic functions and their Fourier series.

(2.1) Generalized functions

The basic phenomenon here is the appearance of certain periodic generalized functions, namely Dirac's δ-functions, when we differentiate the generalized function associated to $f(x)$. All periodic functions below have period $2 L, L>0$.

A periodic generalized function is not a usual function, and does not necessarily has a definite value at a point. However you can always "integrate" periodic generalized function $\alpha(x)$ against any smooth period function $\xi(x)$ on \mathbb{R} and get a well-defined number " $\int_{-L}^{L} \alpha(x) \xi(x) d x$ ". The terminology "integrate" is purely formal; no Riemann sum is involved. A generalized function α is a "black box" which for every input smooth periodic function ξ outputs a number; the output is denoted by $\int_{-L}^{L} \alpha(x) \xi(x) d x$. Smooth periodic function of period $2 L$ are often called "test functions" for periodic generalized function of period $2 L$.

For every $a \in \mathbb{R}$, we have a periodic generalized function $\delta_{x \equiv a(\bmod L)}$, which is the mathematical way to represent the idea of a "point source" of unit strength at a point $a \bmod 2 L$ of $\mathbb{R} / 2 L \mathbb{Z}$. It is customary to abuse notation, and write $\delta_{x=a}$ instead of the cluttered notation $\delta_{x \equiv a(\bmod L)}$ for this Dirac's δ-function. It is defined by

$$
\begin{equation*}
\int_{-L}^{L} \delta_{x=a}(x) \xi(x) d x=\xi(a) \tag{2.1.1}
\end{equation*}
$$

for every $a \in \mathbb{R}$ and every smooth periodic function $\xi(a)$ with period $2 L$.
Every piece-wise smooth periodic function $g(x)$ with period $2 L$ gives rise to a generalized function $[g]$, defined by

$$
\begin{equation*}
\int_{-L}^{L}[g](x), \xi(x) d x:=\int_{-L}^{L} g(x) \xi(x) d x \tag{2.1.2}
\end{equation*}
$$

for every smooth periodic $\xi(a)$ with period $2 L$. Therefore the derivative $[g]^{\prime}$ of $[g]$ is defined by

$$
\begin{equation*}
\int_{-L}^{L}[g]^{\prime}(x) \xi(x) d x=-\int_{-L}^{L} g(x) \xi^{\prime}(x) d x \tag{2.1.3}
\end{equation*}
$$

(2.2) Notation. In this subsection $f(x)$ denotes a piece-wise smooth periodic function on \mathbb{R} with period $2 L$. Let x_{1}, \ldots, x_{m} be non-smooth points of $f(x),-L<x_{1}<\cdots<x_{m} \leq L$, such that for every non-smooth points differs from exactly one of the x_{i} 's by an integer multiple of $2 L$.

Let j_{1}, \ldots, j_{m} be the jumps of $f(x)$ at the non-smooth points, and let $j_{1}^{\prime}, \ldots, j_{m}^{\prime}$ be the jumps of the derivative $f^{\prime}(x)$ of $f(x)$ at the non-smooth points. In other words

$$
\begin{align*}
& j_{k}:=f\left(x_{k}+\right)-f\left(x_{k}-\right)=\lim _{x \rightarrow x_{k}+} f(x)-\lim _{x \rightarrow x_{k}-} f(x) \\
& j_{k}^{\prime}:=f^{\prime}\left(x_{k}+\right)-f^{\prime}\left(x_{k}-\right)=\lim _{x \rightarrow x_{k}+} f^{\prime}(x)-\lim _{x \rightarrow k_{i}-} f^{\prime}(x) \tag{2.2.1}
\end{align*}
$$

for $k=1, \ldots, m$. Let

$$
f(x) \sim \sum_{n \in \mathbb{Z}} c_{n} e^{\frac{\pi \sqrt{-1} n x}{L}}
$$

i.e. the above infinite series is the Fourier series attached to the given piece-wise smooth periodic function $f(x)$ with period $2 L$, where

$$
c_{n}:=\frac{1}{2 L} \int_{-L}^{L} f(x) e^{\pi \sqrt{-1} n x} L d x, \quad \forall n \in \mathbb{Z}
$$

Similarly let

$$
f^{\prime}(x) \sim \sum_{n \in \mathbb{Z}} c_{n}^{\prime} e^{\frac{\pi \sqrt{-1} n x}{L}}
$$

and

$$
f^{\prime \prime}(x) \sim \sum_{n \in \mathbb{Z}} c_{n}^{\prime \prime} e^{\frac{\pi \sqrt{-1} n x}{L}}
$$

be the Fourier series attached to the periodic piece-wise continuous functions $f^{\prime}(x)$ and $f^{\prime \prime}(x)$.
(2.2.2) Proposition The derivative of the generalized function $[f]$ is

$$
\begin{equation*}
[f]^{\prime}=\left[f^{\prime}\right]+\sum_{k=1}^{m} j_{k} \cdot \delta_{x=x_{k}} . \tag{2.2.3}
\end{equation*}
$$

(2.2.4) Corollary The second derivative of the generalized function $[f]$ is

$$
\begin{equation*}
[f]^{\prime \prime}=\left[f^{\prime \prime}\right]+\sum_{k=1}^{m} j_{k}^{\prime} \cdot \delta_{x=x_{k}}+\sum_{k=1}^{m} j_{m} \cdot \delta_{x=x_{k}}^{\prime} . \tag{2.2.5}
\end{equation*}
$$

for every periodic test function $\xi(x)$.
Integrating both sides of (2.2.3) and (2.2.5) against $e^{\frac{-\pi \sqrt{-1} n x}{L}}$, we get corollary 2.2.6 below. 2.2.4, by
(2.2.6) Corollary Let f be a periodic piece-wise smooth function of period $2 L$. Let j_{1}, \ldots, j_{m} and $j_{1}^{\prime}, \ldots, j_{m}^{\prime}$ be the jumps at the singular points x_{1}, \ldots, x_{m} of f and f^{\prime} respectively. Let

$$
\sum_{n \in \mathbb{Z}} c_{n} e^{\frac{\pi \sqrt{ }-1 n x}{L}}, \quad \sum_{n \in \mathbb{Z}} c_{n}^{\prime} e^{\frac{\pi \sqrt{ }-1}{} n x} L \quad \sum_{n \in \mathbb{Z}} c_{n}^{\prime \prime} e^{\frac{\pi \sqrt{ }-1 n x}{L}}
$$

be the Fourier series of $f, f^{\prime}, f^{\prime \prime}$ respectively. Then

$$
\begin{equation*}
\frac{\pi \sqrt{-1} n}{L} c_{n}=c_{n}^{\prime}+\sum_{k=1}^{m} \frac{1}{2 L} j_{k} e^{\frac{-\pi \sqrt{-1} n x_{k}}{L}} \tag{2.2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{-\pi^{2} n^{2}}{L^{2}} c_{n}=c_{n}^{\prime}+\sum_{k=1}^{m} \frac{1}{2 L} j_{k}^{\prime} e^{\frac{-\pi \sqrt{-1} n x_{k}}{L}}+\sum_{k=1}^{m} \frac{1}{2 L} j_{k} \frac{\pi \sqrt{-1} n}{L} e^{\frac{-\pi \sqrt{-1} n x_{k}}{L}} . \tag{2.2.8}
\end{equation*}
$$

(2.3) The Fourier series of a periodic generalized function

For every periodic generalized function α of period $2 L$, define a function $\hat{\alpha}: \mathbb{Z} \rightarrow \mathbb{C}$ by

$$
\begin{equation*}
\hat{\alpha}(n):=\frac{1}{2 L} \int_{-L}^{L} \alpha(x) e^{\frac{-\pi \sqrt{-1} n x}{L}} d x \tag{2.3.1}
\end{equation*}
$$

and the series

$$
\begin{equation*}
\sum_{n \in \mathbb{Z}} \hat{\alpha}(n) e^{\frac{\pi \sqrt{-1} n x}{L}} \tag{2.3.2}
\end{equation*}
$$

is called the Fourier series of α.
The following lemma says that the Fourier series of the derivative α^{\prime} of α is the term-by-term derivative of the Fourier series of α, for every periodic generalized function α on \mathbb{R}. This is conceptually very satisfactory, especially if compared with $\S 3.4$ of Haberman.
(2.3.3) Lemma The Fourier series attached to the derivative α^{\prime} of a generalized periodic function α of period $2 L$ is

$$
\sum_{n \in \mathbb{Z}} \hat{\alpha}(n) \frac{\pi \sqrt{-1} n}{L} e^{\frac{\pi \sqrt{-1} n x}{L}}
$$

which is the term-by-term derivative of the Fourier series of α of α.
Proof.

$$
\begin{aligned}
\hat{\alpha}^{\prime}(n)=\frac{1}{2 L} \int_{-L}^{L} \alpha^{\prime}(x) e^{-\frac{\pi \sqrt{-1} n x}{L}} d x & =-\frac{1}{2 L} \int_{-L}^{L} \alpha(x) \frac{d}{d x} e^{-\frac{\pi \sqrt{-1} n x}{L}} d x \\
& =\frac{\pi \sqrt{-1} n}{L} \frac{1}{2 L} \int_{-L}^{L} \alpha(x) e^{-\frac{\pi \sqrt{ }-1 n x}{L}} d x=\frac{\pi \sqrt{-1} n}{L} \frac{1}{2 L} \hat{\alpha}(n) .
\end{aligned}
$$

(2.3.4) Proposition Let α be a periodic generalized function of period 2L. The Fourier series

$$
\sum_{n \in \mathbb{Z}} \hat{\alpha}(n) e^{\frac{\pi \sqrt{-1} n x}{L}}
$$

of α converges to α in the spaces of generalized function in the following sense: for every smooth periodic function ξ of period $2 L$, the series

$$
\sum_{n \in \mathbb{Z}} \hat{\alpha}(n) \int_{-L}^{L} e^{\frac{\pi \sqrt{-1} n x}{L}} \xi(x) d x
$$

converges to

$$
\int_{-L}^{L} \alpha(x) \xi(x) d x
$$

[^0]: ${ }^{1}$ Square integrable periodic functions on \mathbb{R} include functions of bounded variation and piece-wise continuous functions.

