Supplements on Fourier series

§1. Convergence theorems and the Parseval identity

(1.1) Periodic functions as functions on R/2LZ.

Let L > 0 be a positive integer, and we will consider periodic functions with period 2L
on R, i.e. functions g(x) on R such that g(x + 2L) = g(z) for all z € R. If we identify
any two points of R which differ from each other by an integer multiple of 2L, the resulting
space R/2LZ is essentially the same as a circle. The function x — e gives an explicit
identification. Every periodic function with period 2L is really a function on R/2LZ.

Given any a € R, the corresponding point on R/2LZ will be denoted by amod 2L. Note
that for every b € R such that b — a is an integer multiple of 2L, bmod 2L is equal to
amod2L. If b— a is an integer multiple of 2L, we say that a and b are congruent modulo 2L

and write b = a (mod 2L) for this relation.

Point-wise convergence of Fourier series is a complicated business, The Fourier series
associated to a continuous periodic function may not converge; there are examples of a
continuous periodic function f(x) whose Fourier series diverges at uncoutably many points.
However all functions you will meet in math 241 are piece-wise smooth (but not necessarily
continuous). I will state two propositions for your peace of mind.

(1.2) DEFINITION A function defined on a finite interval [a, b], a < b is said to be of bounded
variation if there exists a number C' > 0 such that for every finite sequence a < 1 < 25 <

< < Ty, < b we have
m—1

S @nr) = flam)| < C.

A periodic function of period 2L, L > 0, is said to be of bounded variation if its restriction
to a period (e.g. [—L, L]) is of bounded variation.

(1.3) REMARK (a) It is obvious that every piece-wise continuously differentiable function
on a finite interval [a, b] is of bounded variation. A fortiori, every piece-wise smooth function
on a finite interval is of bounded variation.

(b) It is equally obvious that every non-decreasing R-valued function on [a, b] is of bounded
variation. It is equally clear that every non-increasing R-valued function on [a,b] is of
bounded variation.

(c) It is a fact that every function f of bounded variation on a finite interval [a,b] is a sum
of a non-decreasing function g; and a non-increasing function gs. It follows that for every
R-valued function f of bounded variation on a finite interval [a, b] and every = € (a, b), both
one-sided limits lim,_,,, f(¢) and lim;_,,_ f(¢) exist. Denote the two limits by f(z+) and
f(xz—) respectively.



(1.4) PROPOSITION Let f(x) be a periodic function of bounded variation with period 2L.
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For every oy € R, the series

converges, and
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(1.5) PROPOSITION Let [ be be a periodic function on R of bounded variation with period

2L. Let ), ., f(n) e™ T be the Fourier series attached to f(z). Define a periodic function
g with period 2L on R by

o) = [ IL(f(t) - fonar= [ F(t)dt — f(0)- (x+ L), VreR.

Then
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for all z € R.

(1.6) PROPOSITION (PARSEVAL IDENTITY) Let f(x),g(x) be square integrable! periodic
functions on R with period 2L. Let f(n),g(n), n € Z, be the Fourier coefficients of f and g
respectively:
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1Square integrable periodic functions on R include functions of bounded variation and piece-wise contin-
uous functions.



Example. Let f be the periodic function with period 1 such that
f)=z Vee (-3

The n-th Fourier coefficient of f is
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f(0)=0
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the equality

becomes

which simplifies to
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Finally we state a theorem of Fejér on Fourier series of continuous periodic functions.

(1.7) PROPOSITION Let f be a continuous periodic function on R with period 2L. For each
positive integer n, denote by S, the n-th partial sum

Su(@) =" fn)e™ ™ (1.7.1)
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of the Fourier series of f. Then the arithmetic means
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of the partial sums converge uniformly to f. In other words, for every e > 0, there exists a
positive integer Ny such that

‘f(x) — % (So(l’) + Sl(ﬂf) + -+ Snfl(l’))| <€, Vn > N(], VreR.



§2. Term-by-term differentiation of Fourier series

We give an account of term-by-term differentiation of Fourier series using a very small part
of the theory of generalized function. See [?, Ch. 4] for more information about generalized
periodic functions and their Fourier series.

(2.1) Generalized functions

The basic phenomenon here is the appearance of certain periodic generalized functions,
namely Dirac’s d-functions, when we differentiate the generalized function associated to f(x).
All periodic functions below have period 2L, L > 0.

A periodic generalized function is not a usual function, and does not necessarily has a
definite value at a point. However you can always “integrate” periodic generalized func-
tion «(z) against any smooth period function {(z) on R and get a well-defined number
“ f_LL a(z)&(x)dz”. The terminology “integrate” is purely formal; no Riemann sum is in-
volved. A generalized function « is a “black box” which for every input smooth periodic
function £ outputs a number; the output is denoted by f_LL a(x)&(x)dx. Smooth periodic
function of period 2L are often called “test functions” for periodic generalized function of

period 2L.

For every a € R, we have a periodic generalized function d,=4 (modz), Which is the mathe-
matical way to represent the idea of a “point source” of unit strength at a point a mod 2L of
R/2L7Z. Tt is customary to abuse notation, and write d,—, instead of the cluttered notation
dz=a (moar) for this Dirac’s d-function. It is defined by

/_ bemal@) (@) dr = €(a) (2.1.1)

for every a € R and every smooth periodic function &(a) with period 2L.

Every piece-wise smooth periodic function g(z) with period 2L gives rise to a generalized
function [g], defined by

/_ lgl(@). () do = / gla)€lo) do (2.1.2)

for every smooth periodic £(a) with period 2L. Therefore the derivative [g]’ of [g] is defined
by

/ ) (2) €(z) dr = — / 9(2) €' () de (2.1.3)
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(2.2) Notation. In this subsection f(z) denotes a piece-wise smooth periodic function on
R with period 2L. Let x1,..., 2, be non-smooth points of f(z), —L <21 < - - < x,, < L,
such that for every non-smooth points differs from exactly one of the z;’s by an integer
multiple of 2L.

Let j1,...,Jm be the jumps of f(z) at the non-smooth points, and let ji,..., /. be the
jumps of the derivative f'(z) of f(z) at the non-smooth points. In other words
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i.e. the above infinite series is the Fourier series attached to the given piece-wise smooth
periodic function f(x) with period 2L, where

Cp = %/z f(z)e™ " Ldx, VYn€Z
Similarly let
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be the Fourier series attached to the periodic piece-wise continuous functions f’(x) and f”(z).

(2.2.2) PROPOSITION The derivative of the generalized function [f] is
Y =11+ D - oy - (2.2.3)
k=1
(2.2.4) COROLLARY The second derivative of the generalized function [f] is
Y = U4 Dk Gam + D m G (2.2.5)
k=1 k=1

for every periodic test function &(x).

Integrating both sides of (2.2.3) and (2.2.5) against e W\?m, we get corollary 2.2.6 below.
9.2.4, by



(2.2.6) COROLLARY Let [ be a periodic piece-wise smooth function of period 2L. Let

Jiye-yJdm and ji, ..., 0 be the jumps at the singular points i, ...,T, of f and f’ respec-
tively. Let
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be the Fourier series of f, f', f" respectively. Then
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(2.3) The Fourier series of a periodic generalized function

For every periodic generalized function « of period 2L, define a function & : Z — C by
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and the series
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is called the Fourier series of a.

The following lemma says that the Fourier series of the derivative o’ of « is the term-by-term
derivative of the Fourier series of «, for every periodic generalized function o on R. This is
conceptually very satisfactory, especially if compared with §3.4 of Haberman.

(2.3.3) LEMMA The Fourier series attached to the derivative o' of a generalized periodic
function « of period 2L is
N — T/ —1nz
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which 1s the term-by-term derivative of the Fourier series of a of a.

PROOF.
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(2.3.4) PROPOSITION Let «v be a periodic generalized function of period 2L. The Fourier

series
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of a converges to o in the spaces of generalized function in the following sense: for every
smooth periodic function & of period 2L, the series

L
N v —1nx
nEEZ a(n) /_L e &(x)dx

converges to

/ ’ a(z) £(x) da.

—L



