
Supplements on Fourier series

§1. Convergence theorems and the Parseval identity
(1.1) Periodic functions as functions on R/2LZ.

Let L > 0 be a positive integer, and we will consider periodic functions with period 2L
on R, i.e. functions g(x) on R such that g(x + 2L) = g(x) for all x ∈ R. If we identify
any two points of R which differ from each other by an integer multiple of 2L, the resulting

space R/2LZ is essentially the same as a circle. The function x 7→ e
π
√
−1x
L gives an explicit

identification. Every periodic function with period 2L is really a function on R/2LZ.
Given any a ∈ R, the corresponding point on R/2LZ will be denoted by amod 2L. Note

that for every b ∈ R such that b − a is an integer multiple of 2L, bmod 2L is equal to
amod 2L. If b− a is an integer multiple of 2L, we say that a and b are congruent modulo 2L
and write b ≡ a (mod 2L) for this relation.

Point-wise convergence of Fourier series is a complicated business, The Fourier series
associated to a continuous periodic function may not converge; there are examples of a
continuous periodic function f(x) whose Fourier series diverges at uncoutably many points.
However all functions you will meet in math 241 are piece-wise smooth (but not necessarily
continuous). I will state two propositions for your peace of mind.

(1.2) Definition A function defined on a finite interval [a, b], a < b is said to be of bounded
variation if there exists a number C > 0 such that for every finite sequence a ≤ x1 < x2 <
· · · < xm ≤ b we have

m−1∑
k=1

|f(xm+1)− f(xm)| < C.

A periodic function of period 2L, L > 0, is said to be of bounded variation if its restriction
to a period (e.g. [−L,L]) is of bounded variation.

(1.3) Remark (a) It is obvious that every piece-wise continuously differentiable function
on a finite interval [a, b] is of bounded variation. A fortiori, every piece-wise smooth function
on a finite interval is of bounded variation.
(b) It is equally obvious that every non-decreasing R-valued function on [a, b] is of bounded
variation. It is equally clear that every non-increasing R-valued function on [a, b] is of
bounded variation.
(c) It is a fact that every function f of bounded variation on a finite interval [a, b] is a sum
of a non-decreasing function g1 and a non-increasing function g2. It follows that for every
R-valued function f of bounded variation on a finite interval [a, b] and every x ∈ (a, b), both
one-sided limits limt→x+ f(t) and limt→x− f(t) exist. Denote the two limits by f(x+) and
f(x−) respectively.
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(1.4) Proposition Let f(x) be a periodic function of bounded variation with period 2L.

Let
∑

n∈Z f̂(n) e
π
√
−1nx
L be the Fourier series attached to f(x), where

f̂(n) :=
1

2L

∫ L

−L
f(t) e

−π
√
−1nt
L dt

For every x0 ∈ R, the series ∑
n∈Z

f̂(n) e
π
√
−1nx0
L

converges, and ∑
n∈Z

f̂(n) e
π
√
−1nx0
L =

f(x0+) + f(x0−)

2
.

(1.5) Proposition Let f be be a periodic function on R of bounded variation with period

2L. Let
∑

n∈Z f̂(n) e
π
√
−1nx
L be the Fourier series attached to f(x). Define a periodic function

g with period 2L on R by

g(x) =

∫ x

−L
(f(t)− f̂(0)) dt =

∫ x

−L
f(t) dt− f̂(0) · (x+ L), ∀x ∈ R.

Then

g(x) =
∑

0 6=n∈Z

f̂(n)

∫ x

−L
e
π
√
−1nt
L dt =

∑
06=n∈Z

f̂(n)

π
√
−1n

[
e
π
√
−1nx
L − (−1)n

]
for all x ∈ R.

(1.6) Proposition (Parseval identity) Let f(x), g(x) be square integrable1 periodic
functions on R with period 2L. Let f̂(n), ĝ(n), n ∈ Z, be the Fourier coefficients of f and g
respectively:

f̂(n) =
1

2L

∫ L

−L
f(x) e

π
√
−1nx
L dx, ĝ(n) =

1

2L

∫ L

−L
g(x) e

π
√
−1nx
L dx.

(a)
1

2L

∫ L

−L
f(x) g(x) dx =

∑
n∈Z

f̂(n) ĝ(n)

(b)
1

2L

∫ L

−L
|f(x)|2 dx =

∑
n∈Z

|f̂(n)|2

1Square integrable periodic functions on R include functions of bounded variation and piece-wise contin-
uous functions.
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Example. Let f be the periodic function with period 1 such that

f(x) = x ∀x ∈ (−1
2
, 1
2
).

The n-th Fourier coefficient of f is

f̂(n) =

∫ 1/2

−1/2
x e−2π

√
−1nx dx = − 1

2π
√
−1n

xe−2π
√
−1nx∣∣x=1/2

x=−1/2 =
1

2π
√
−1n

(−1)n+1.

if n 6= 0, and
f̂(0) = 0.

Since ∫ 1/2

−1/2
x2 dx =

1

12
,

the equality ∑
n∈Z

f̂(n)2 =

∫ 1/2

−1/2
f(x)2 dx

becomes
1

2π2

∞∑
n=1

n2 =
1

12
,

which simplifies to
∞∑
n=1

n2 =
π2

6
. (1.6.1)

Finally we state a theorem of Fejér on Fourier series of continuous periodic functions.

(1.7) Proposition Let f be a continuous periodic function on R with period 2L. For each
positive integer n, denote by Sn the n-th partial sum

Sn(x) =
∑
|k|≤n

f̂(n) e
π
√
−1nx
L (1.7.1)

of the Fourier series of f . Then the arithmetic means

1

n
(S0 + S1 + · · ·+ Sn−1)

of the partial sums converge uniformly to f . In other words, for every ε > 0, there exists a
positive integer N0 such that∣∣f(x)− 1

n
(S0(x) + S1(x) + · · ·+ Sn−1(x))

∣∣ < ε, ∀n ≥ N0, ∀x ∈ R.
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§2. Term-by-term differentiation of Fourier series
We give an account of term-by-term differentiation of Fourier series using a very small part
of the theory of generalized function. See [?, Ch. 4] for more information about generalized
periodic functions and their Fourier series.

(2.1) Generalized functions
The basic phenomenon here is the appearance of certain periodic generalized functions,

namely Dirac’s δ-functions, when we differentiate the generalized function associated to f(x).
All periodic functions below have period 2L, L > 0.

A periodic generalized function is not a usual function, and does not necessarily has a
definite value at a point. However you can always “integrate” periodic generalized func-
tion α(x) against any smooth period function ξ(x) on R and get a well-defined number

“
∫ L
−L α(x) ξ(x) dx”. The terminology “integrate” is purely formal; no Riemann sum is in-

volved. A generalized function α is a “black box” which for every input smooth periodic
function ξ outputs a number; the output is denoted by

∫ L
−L α(x) ξ(x) dx. Smooth periodic

function of period 2L are often called “test functions” for periodic generalized function of
period 2L.

For every a ∈ R, we have a periodic generalized function δx≡a (modL), which is the mathe-
matical way to represent the idea of a “point source” of unit strength at a point amod 2L of
R/2LZ. It is customary to abuse notation, and write δx=a instead of the cluttered notation
δx≡a (modL) for this Dirac’s δ-function. It is defined by∫ L

−L
δx=a(x) ξ(x) dx = ξ(a) (2.1.1)

for every a ∈ R and every smooth periodic function ξ(a) with period 2L.

Every piece-wise smooth periodic function g(x) with period 2L gives rise to a generalized
function [g], defined by ∫ L

−L
[g](x), ξ(x) dx :=

∫ L

−L
g(x) ξ(x) dx (2.1.2)

for every smooth periodic ξ(a) with period 2L. Therefore the derivative [g]′ of [g] is defined
by ∫ L

−L
[g]′(x) ξ(x) dx = −

∫ L

−L
g(x) ξ′(x) dx (2.1.3)
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(2.2) Notation. In this subsection f(x) denotes a piece-wise smooth periodic function on
R with period 2L. Let x1, . . . , xm be non-smooth points of f(x), −L < x1 < · · · < xm ≤ L,
such that for every non-smooth points differs from exactly one of the xi’s by an integer
multiple of 2L.

Let j1, . . . , jm be the jumps of f(x) at the non-smooth points, and let j′1, . . . , j
′
m be the

jumps of the derivative f ′(x) of f(x) at the non-smooth points. In other words

jk := f(xk+)− f(xk−) = lim
x→xk+

f(x)− lim
x→xk−

f(x)

j′k := f ′(xk+)− f ′(xk−) = lim
x→xk+

f ′(x)− lim
x→ki−

f ′(x)
(2.2.1)

for k = 1, . . . ,m. Let

f(x) ∼
∑
n∈Z

cn e
π
√
−1nx
L ,

i.e. the above infinite series is the Fourier series attached to the given piece-wise smooth
periodic function f(x) with period 2L, where

cn :=
1

2L

∫ L

−L
f(x) eπ

√
−1nxLdx, ∀n ∈ Z.

Similarly let

f ′(x) ∼
∑
n∈Z

c′n e
π
√
−1nx
L

and

f ′′(x) ∼
∑
n∈Z

c′′n e
π
√
−1nx
L

be the Fourier series attached to the periodic piece-wise continuous functions f ′(x) and f ′′(x).

(2.2.2) Proposition The derivative of the generalized function [f ] is

[f ]′ = [f ′] +
m∑
k=1

jk · δx=xk . (2.2.3)

(2.2.4) Corollary The second derivative of the generalized function [f ] is

[f ]′′ = [f ′′] +
m∑
k=1

j′k · δx=xk +
m∑
k=1

jm · δ′x=xk . (2.2.5)

for every periodic test function ξ(x).

Integrating both sides of (2.2.3) and (2.2.5) against e
−π
√
−1nx
L , we get corollary 2.2.6 below.

2.2.4, by
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(2.2.6) Corollary Let f be a periodic piece-wise smooth function of period 2L. Let
j1, . . . , jm and j′1, . . . , j

′
m be the jumps at the singular points x1, . . . , xm of f and f ′ respec-

tively. Let ∑
n∈Z

cne
π
√
−1nx
L ,

∑
n∈Z

c′ne
π
√
−1nx
L ,

∑
n∈Z

c′′ne
π
√
−1nx
L

be the Fourier series of f, f ′, f ′′ respectively. Then

π
√
−1n
L

cn = c′n +
m∑
k=1

1
2L
jk e

−π
√
−1nxk
L , (2.2.7)

and

−π2n2

L2 cn = c′n +
m∑
k=1

1
2L
j′k e

−π
√
−1nxk
L +

m∑
k=1

1
2L
jk

π
√
−1n
L

e
−π
√
−1nxk
L . (2.2.8)

(2.3) The Fourier series of a periodic generalized function

For every periodic generalized function α of period 2L, define a function α̂ : Z→ C by

α̂(n) :=
1

2L

∫ L

−L
α(x) e

−π
√
−1nx
L dx , (2.3.1)

and the series ∑
n∈Z

α̂(n) e
π
√
−1nx
L (2.3.2)

is called the Fourier series of α.

The following lemma says that the Fourier series of the derivative α′ of α is the term-by-term
derivative of the Fourier series of α, for every periodic generalized function α on R. This is
conceptually very satisfactory, especially if compared with §3.4 of Haberman.

(2.3.3) Lemma The Fourier series attached to the derivative α′ of a generalized periodic
function α of period 2L is ∑

n∈Z

α̂(n) π
√
−1n
L

e
π
√
−1nx
L ,

which is the term-by-term derivative of the Fourier series of α of α.

Proof.

α̂′(n) = 1
2L

∫ L

−L
α′(x) e−

π
√
−1nx
L dx = − 1

2L

∫ L

−L
α(x)

d

dx
e−

π
√
−1nx
L dx

= π
√
−1n
L

1
2L

∫ L

−L
α(x) e−

π
√
−1nx
L dx = π

√
−1n
L

1
2L
α̂(n).
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(2.3.4) Proposition Let α be a periodic generalized function of period 2L. The Fourier
series ∑

n∈Z

α̂(n) e
π
√
−1nx
L

of α converges to α in the spaces of generalized function in the following sense: for every
smooth periodic function ξ of period 2L, the series

∑
n∈Z

α̂(n)

∫ L

−L
e
π
√
−1nx
L ξ(x) dx

converges to ∫ L

−L
α(x) ξ(x) dx.
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