Math 350 Assignment 1, Fall 2015

Due in class on Friday, January 22nd

1. Show that

$$
\bigcap_{n \in \mathbb{N}>0}\left(-\frac{1}{n}, \frac{1}{n}\right)=\{0\}
$$

(Recall that $\left(-\frac{1}{n}, \frac{1}{n}\right):=\left\{x \in \mathbb{R} \left\lvert\,-\frac{1}{n}<x<\frac{1}{n}\right.\right.$.)
2. Let X, Y, Z be sets and let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be functions.
(a) Suppose that f and g are both onto (or equivalently, surjective). Show that $g \circ f$ is onto.
(b) Suppose that f and g are both one-to-one (or equivalently, injective). Show that $g \circ f$ is injective.
(c) Suppose that $g \circ f$ is onto. Show that g is onto.
(d) Suppose that $g \circ f$ is one-to-one. Show that f is one-to-one.
(e) Suppose that $g \circ f$ is bijective (i.e. it is both one-to-one and onto), f is surjective, and g is injective. Is it true that f is bijective? (Either give a proof or a counter-example.)
3. Define a relation R on \mathbb{Z} by

$$
(a, b) \in R \Longleftrightarrow \exists n \in \mathbb{Z} \text { such that } a-b=101 \cdot n
$$

(a) Prove that R is an equivalence relation.
(b) Describe the set of all equivalence classes for R. In particular determine the number of equivalence classes for R.
4. It is a fact that there exists rational numbers a, b, c, d, e such that

$$
\sum_{1 \leq i \leq n} i^{3}=a n^{4}+b n^{3}+c n^{2}+d n+e
$$

for all positive integers n.
(a) Determine the values of a, b, c, d, e.
(b) Prove that the above displayed equality holds for all positive integers n.
[Hint: mathematical induction.]

