Math 314 Assignment 4, Fall 2016

Due in class on Friday, February 12
Part 1. Read 3.1-3.5 of Hoffman-Kunze.
Part 2. Do and hand in the following problems in Hoffman-Kunze.

- 3.1, problems 9, 12
- 3.2, problems 7, 11
- 3.3, problem 5
- 3.4, problems 8, 10
- 3.5, problem 5

Part 3. (extra credit)
A. Find an \mathbb{R}-linear transformation S from \mathbb{C} to $\mathrm{M}_{2}(\mathbb{R})$, the \mathbb{R}-vector space of all 2×2-matrices with entries in \mathbb{R} such that S has the same property (b) as in problem 5 of $\S 3.3$, i.e.

$$
S\left(z_{1} \cdot z_{2}\right)=S\left(z_{1}\right) S\left(z_{2}\right) \quad \text { for all } z_{1}, z_{2} \in \mathbb{C}
$$

and

$$
\operatorname{dim}_{\mathbb{R}}(\operatorname{Im}(T) \cap \operatorname{Im}(S))=1,
$$

where $T: \mathbb{C} \rightarrow \mathrm{M}_{2}(\mathbb{R})$ is the linear transformation in problem 5 of $\S 3.3$. (Recall that $\operatorname{Im}(S)$ is the image of the linear transformation S.)
B. Does there exist a field F, a positive integer n, and two $n \times n$ matrices $A, B \in \mathrm{M}_{n}(F)$ such that $A B-B A=I_{n}$? (Compare this with problem 5 of $\S 3.5$.)

