MATH 314 PRACTICE PROBLEMS, MARCH 2016

1. Give an example of a linear operator *J* on a non-zero finite dimensional vector space *V* over \mathbb{R} such that $J^2 + Id_V = 0$, the zero operator.

- 2. Give an example of a non-zero linear operator N on a vector space V over \mathbb{R} such that $N^2 = 0$.
- 3. Let U_1, U_2, U_3 be vector subspaces of a finite-dimensional vector space V over a field F. Prove that

$$\dim_F(U_1 \cap U_2 \cap U_3) \geq \sum_{i=1}^3 \dim_F(U_i) - 2\dim_F(V).$$

- 4. Let U, M, N be vector subspaces of a vector space V over a field F.
 - (a) Show that $U \cap (M+N) \supseteq (U \cap M) + (U \cap N)$.
 - (b) Prove that if $U \supseteq M$, then $U \cap (M+N) = M + (U \cap N)$.
- 5. Let *V* be the set of all smooth \mathbb{C} -valued functions f(t) on \mathbb{R} such that

$$\frac{d^3f}{dt^3} + 3\frac{d^2f}{dt^2} + 3\frac{df}{dt} + f = 0$$

- (a) Let \mathscr{F} be the \mathbb{C} -vector space consisting of all \mathbb{C} -valued functions on \mathbb{R} . Show that V is a \mathbb{C} -vector subspace of \mathscr{F} .
- (b) Show that $\frac{d}{dt}$ induces a linear operator T on V.
- (c) Find a basis of V.
- (d) Determine the matrix representation of the linear operator T with respect to the basis you gave in (c) above.

6. Notation as in problem 5 above. Let $\lambda : V \to \mathbb{C}$ be the function on *V* which sends every element $f(t) \in V$ to f(0), the value of the function f(t) at t = 0.

- (a) Show that λ is an element of the dual space $V^* = \text{Hom}_{\mathbb{C}}(V,\mathbb{C})$ of *V*.
- (b) Let T^t be the transpose of the linear operator T on V. Compute the value of $T^t(\lambda)$ at the element $e^{-t} \in V$.
- (c) Compute $\text{Ker}(T^t)$, the kernel of T^t , and find a \mathbb{C} -basis of $\text{Ker}(T^t)$.

7. Let *T* be an *F*-linear operator on a vector space *V* over a field *F*. Suppose that $f(x) \in F[x]$ is a polynomial such that f(1) = 0, $f'(1) \neq 0$, $f(T) = 0 \cdot Id_V$, and the ideal of F[x] consisting of all polynomials $g(x) \in F[x]$ such that $g(T) = 0 \cdot Id_V$ is generated by f(x). Show that there exists a non-zero vector $v \in V$ such that T(v) = v.

8. Let *T* be a linear operator on a real vector space *V* such that $T^3 = \text{Id}_V$. Let U := Im(T - Id) and let $W := \text{Im}(T^2 + T + \text{Id}_V)$.

- (a) Show that $U \cap W = (0)$.
- (b) Show that U + W = V.

(Hint: The assumption means that f(T) = 0 for the polynomial $f(x) = x^3 - 1 = (x - 1)(x^2 + x + 1)$.