Math 314 Practice Problems, March 2016

1. Give an example of a linear operator J on a non-zero finite dimensional vector space V over \mathbb{R} such that $J^{2}+\mathrm{Id}_{V}=0$, the zero operator.
2. Give an example of a non-zero linear operator N on a vector space V over \mathbb{R} such that $N^{2}=0$.
3. Let U_{1}, U_{2}, U_{3} be vector subspaces of a finite-dimensional vector space V over a field F. Prove that

$$
\operatorname{dim}_{F}\left(U_{1} \cap U_{2} \cap U_{3}\right) \geq \sum_{i=1}^{3} \operatorname{dim}_{F}\left(U_{i}\right)-2 \operatorname{dim}_{F}(V) .
$$

4. Let U, M, N be vector subspaces of a vector space V over a field F.
(a) Show that $U \cap(M+N) \supseteq(U \cap M)+(U \cap N)$.
(b) Prove that if $U \supseteq M$, then $U \cap(M+N)=M+(U \cap N)$.
5. Let V be the set of all smooth \mathbb{C}-valued functions $f(t)$ on \mathbb{R} such that

$$
\frac{d^{3} f}{d t^{3}}+3 \frac{d^{2} f}{d t^{2}}+3 \frac{d f}{d t}+f=0
$$

(a) Let \mathscr{F} be the \mathbb{C}-vector space consisting of all \mathbb{C}-valued functions on \mathbb{R}. Show that V is a \mathbb{C} vector subspace of \mathscr{F}.
(b) Show that $\frac{d}{d t}$ induces a linear operator T on V.
(c) Find a basis of V.
(d) Determine the matrix representation of the linear operator T with respect to the basis you gave in (c) above.
6. Notation as in problem 5 above. Let $\lambda: V \rightarrow \mathbb{C}$ be the function on V which sends every element $f(t) \in V$ to $f(0)$, the value of the function $f(t)$ at $t=0$.
(a) Show that λ is an element of the dual space $V^{*}=\operatorname{Hom}_{\mathbb{C}}(V, \mathbb{C})$ of V.
(b) Let T^{t} be the transpose of the linear operator T on V. Compute the value of $T^{t}(\lambda)$ at the element $e^{-t} \in V$.
(c) Compute $\operatorname{Ker}\left(T^{t}\right)$, the kernel of T^{t}, and find a \mathbb{C}-basis of $\operatorname{Ker}\left(T^{t}\right)$.
7. Let T be an F-linear operator on a vector space V over a field F. Suppose that $f(x) \in F[x]$ is a polynomial such that $f(1)=0, f^{\prime}(1) \neq 0, f(T)=0 \cdot \mathrm{Id}_{V}$, and the ideal of $F[x]$ consisting of all polynomials $g(x) \in F[x]$ such that $g(T)=0 \cdot \operatorname{Id}_{V}$ is generated by $f(x)$. Show that there exists a nonzero vector $v \in V$ such that $T(v)=v$.
8. Let T be a linear operator on a real vector space V such that $T^{3}=\operatorname{Id}_{V}$. Let $U:=\operatorname{Im}(T-\mathrm{Id})$ and let $W:=\operatorname{Im}\left(T^{2}+T+\operatorname{Id}_{V}\right)$.
(a) Show that $U \cap W=(0)$.
(b) Show that $U+W=V$.
(Hint: The assumption means that $f(T)=0$ for the polynomial $f(x)=x^{3}-1=(x-1)\left(x^{2}+x+1\right)$.

