MATH 314 PRACTICE PROBLEMS, APRIL 2016

- 1. True/False question. Give a proof if true, and give a counter-example if false.
 - Every square matrix with entries in ℝ is conjugate (by an invertible matrix with entries in ℝ) to an upper-triangular matrix.
 - If the minimal polynomial of linear operator T on a finite dimensional vector space over \mathbb{C} is x^3 , then the dimension of the image of T is at least 2.
 - Suppose that the characteristic polynomial of a square matrix with entries in \mathbb{C} is $(x-2)^3(x+7)$, then this matrix is not diagonalizable.
 - Let T be a linear operator on a finite dimensional vector space over a field F. Let f(x) be a polynomial in F[x] such that f(x) is relatively prime to the minimal polynomial of T. Then f(T) is an isomorphism.

2. Let *T* be a linear operator on a finite dimensional vector space over \mathbb{Q} . Suppose that the characteristic polynomial is $(x^3 - 1)^3$. What are the possible rational canonical forms of *T*?

3. Let P_4 be the 5-dimensional vector space over \mathbb{R} consisting of all polynomials in one variable *x* of degree at most 4, with inner product defined by

$$(f|g) := \int_{-1}^{1} f(x) g(x) dx.$$

Let $D \in \text{End}_{\mathbb{R}}(P_4)$ be the linear operator on P_4 induced by $\frac{d}{dx}$. Let D^* be the adjoint of D. Find $D^*(x^4 + x^3 + x^2 + x + 1)$.

4. Let P_4 be the 5-dimensional vector space over \mathbb{R} consisting of all polynomials in one variable *x* of degree at most 4, and let $D \in \text{End}_{\mathbb{R}}(P_4)$ be the linear operator on P_4 induced by $\frac{d}{dx}$. Find the rational caonical form for the linear operator $D^2 + D + 1$.

5. Give an example of a unitary operator U on a 5-dimensional vector space V such that $\text{Ker}(U - \text{Id}_V)$ is 3-dimensional.

6. Given an example of a linear operator on a 5-dimensional vector space V with an inner product which is *not* normal.

7. Given an example of two linear operator S_1, S_2 on a finite dimensional vector space V such that both S_1 and S_2 are diagonalizable but $\{S_1, S_2\}$ is not simultaneously diagonalizable.

8. Let \mathcal{F} be the family consisting of all 2×2 matrices of the form

$$\begin{pmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{pmatrix}$$

Is \mathcal{F} simultaneously diagonalizable over \mathbb{C} ?