Math 314 Practice Problems, April 2016

1. True/False question. Give a proof if true, and give a counter-example if false.

- Every square matrix with entries in \mathbb{R} is conjugate (by an invertible matrix with entries in \mathbb{R}) to an upper-triangular matrix.
- If the minimal polynomial of linear operator T on a finite dimensional vector space over \mathbb{C} is x^{3}, then the dimension of the image of T is at least 2 .
- Suppose that the characteristic polynomial of a square matrix with entries in \mathbb{C} is $(x-2)^{3}(x+7)$, then this matrix is not diagonalizable.
- Let T be a linear operator on a finite dimensional vector space over a field F. Let $f(x)$ be a polynomial in $F[x]$ such that $f(x)$ is relatively prime to the minimal polynomial of T. Then $f(T)$ is an isomorphism.

2. Let T be a linear operator on a finite dimensional vector space over \mathbb{Q}. Suppose that the characteristic polynomial is $\left(x^{3}-1\right)^{3}$. What are the possible rational canonical forms of T ?
3. Let P_{4} be the 5 -dimensional vector space over \mathbb{R} consisting of all polynomials in one variable x of degree at most 4 , with inner product defined by

$$
(f \mid g):=\int_{-1}^{1} f(x) g(x) d x
$$

Let $D \in \operatorname{End}_{\mathbb{R}}\left(P_{4}\right)$ be the linear operator on P_{4} induced by $\frac{d}{d x}$. Let D^{*} be the adjoint of D. Find $D^{*}\left(x^{4}+x^{3}+x^{2}+x+1\right)$.
4. Let P_{4} be the 5-dimensional vector space over \mathbb{R} consisting of all polynomials in one variable x of degree at most 4, and let $D \in \operatorname{End}_{\mathbb{R}}\left(P_{4}\right)$ be the linear operator on P_{4} induced by $\frac{d}{d x}$. Find the rational caonical form for the linear operator $D^{2}+D+1$.
5. Give an example of a unitary operator U on a 5 -dimensional vector space V such that $\operatorname{Ker}\left(U-\operatorname{Id}_{V}\right)$ is 3-dimensional.
6. Given an example of a linear operator on a 5 -dimensional vector space V with an inner product which is not normal.
7. Given an example of two linear operator S_{1}, S_{2} on a finite dimensional vector space V such that both S_{1} and S_{2} are diagonalizable but $\left\{S_{1}, S_{2}\right\}$ is not simultaneously diagonalizable.
8. Let \mathcal{F} be the family consisting of all 2×2 matrices of the form

$$
\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)
$$

Is \mathcal{F} simultaneously diagonalizable over \mathbb{C} ?

