Math 350 PRACTICE PROBLEMS FOR THE FIRST MIDTERM
 October, 2015

1. Suppose that a is an element of $\mathbb{Z} / 101 \mathbb{Z}$ such that $a^{513}=1$. Is it possible that a is a primitive 100 -th root of 1 in $\mathbb{Z} / 101 \mathbb{Z}$? Either give an example of a primitive element whose 513 rd power is 1 , or prove that there does not exist such an element.
2. 3. Determine whether the following statements are true or false.
(a) For prime numbers p, the Legendre symbol $\left(\frac{5}{p}\right)$ depends only on the congruence class of p modulo 5 .
(b) For prime numbers p, the Legendre symbol $\left(\frac{11}{p}\right)$ depends only on the congruence class of p modulo 11 .
(c) For non-zero natural numbers a, b which are relatively prime, the Jacobi symbol $\left(\frac{a}{b}\right)$ depends only on the congruence class of a modulo b. (d) For non-zero natural numbers a, b which are relatively prime, the Jacobi symbol $\left(\frac{a}{b}\right)$ depends only on the congruence class of b modulo $4 a$.
1. Let p, q be prime numbers, $p \neq q$. Find a natural number n with $0 \neq n<p q$ such that $p^{2 q-1}+q^{2 p-1} \equiv n(\bmod p q)$. (The number n should be given in terms of p and q.)
2. Suppose that d is a positive odd integer such that the Jacobi symbol $\left(\frac{-1}{d}\right)=1$. Is -1 necessarily a square in $\mathbb{Z} / d \mathbb{Z}$? Either give a proof, or provide a counter-example.
3. Prove or disprove the following statement: For every positive integer $n \geq 2$ there exists an element $(a \in \mathbb{Z} / n \mathbb{Z})^{\times}$such that every element of $(\mathbb{Z} / n \mathbb{Z})^{\times}$is a power of a ?
