Math 350 Assignment 3, Fall 2015

Due in class on Friday, September 18th

Read Chapters 10 to Chapter 13

Part 1. From the textbook A friendly introduction to number theory.

- Exercise 10.1 (b) and the following statement $\left(\mathrm{a}^{\prime}\right)$: Show that $B^{2} \equiv 1(\bmod m)$.
(Note that we only want to consider integers $m \geq 2$.)
- Exercise 11.12.
- Exercise 12.3 (a), (b)
- Exercise 13.6 (a), (b)

Part 2. Extra credit problems:

- Prove 10.1 (a) AND the pattern/statement in 10.1 (b) (which you found from a suitably large sample values of m) for general m.
(The statement you prove should take the following form: $\prod_{a \in(\mathbb{Z} / m \mathbb{Z})^{\times}}=-1 \bmod m$ if and only if such and such a condition on m holds; otherwise $\prod_{a \in(\mathbb{Z} / m \mathbb{Z})^{\times}}=1 \bmod m$.)
- Exercise 12.3 (c).
[Hint: Don't be intimidated by the comment "This is quite difficult.". You might want to sum these $p-1$ terms in pairs, compute $\frac{1}{i}+\frac{1}{p-i}$ in $\mathbb{Z} / p^{2} \mathbb{Z}$ first.]
- Exercise 13.6 (c). In addition, determine by exact formula for the difference

$$
\int_{2}^{x} \frac{d t}{\log t}-\left(\log (\log x)+\sum_{k=1}^{\infty} \frac{(\log x)^{k}}{k \cdot k!}\right)
$$

and also get a numerical estimate of this difference.
[You should also show that the series converges.]

