Math 350 Assignment 6, Fall 2015

Due in class on Friday, October 16
Read Chapters 19 and chapter 28. (We have proved the existence of primitive $p-1^{\text {st }}$ root of 1 in $\mathbb{Z} / p \mathbb{Z}$ in class. Please compare the proof we give in class with the proof in the textbook.)

Part 1. From the textbook A friendly introduction to number theory.

- Exercises 19.1 and 19.2
- Exercises 28.6 (a) and 28.7.

Part 2. Extra credit problems:

1. Suppose that p is a prime number.
(a) Does $(\mathbb{Z} / p \mathbb{Z})^{\times}$contain a primitive 4-th root of 1 ?
(b) How many elements of $\mathbb{Z} / p \mathbb{Z}$ are cubes (i.e. elements of the form \bar{a}^{3} for some $\bar{a} \in \mathbb{Z} / p \mathbb{Z}$)? [Your answer will depends on $p \bmod 3$.]
2. Let n be a positive odd integer. For any positive integer a which is not divisible by n, we say that a is a witness that n is a composite number according to the the Miller-Rabin test if both conditions (a), (b) in Theorem 19.3 hold.
(a) Suppose that n is a composite number. Let S be the set of all positive integers a such that $1 \leq a \leq n-1$ and a is a witness that n is a composite number according to Miller-Rabin. Determine the cardinality of S.
[Your answer will depend on the prime factorization of n.]
(b)) Suppose we randomly draw an element $\bar{a} \in \mathbb{Z} / n \mathbb{Z}$, in such a way that all elements of $\mathbb{Z} / n \mathbb{Z}$ have equal chance of being drawn. What is the chance that \bar{a} is a witness that n is composite?
(c) Can you give a uniform lower bound for the chance in (b), assuming that n is a composite number?
(d) If you repeat the random drawing as in (b) N times in such a way that each drawing is independent of what occurred before. Estimate the chance that these N drawings do not produce any witness that n is a composite number.
