Math 315 practice problems, December 4, 2015

- 1. (True/False questions with proofs, 30 points) Decide whether of the following statements are true or false. Provide a proof if it is true; give a counter-example if it is false.
 - (a) Let $n \ge 2$ be positive integers. If $a^n \equiv a \pmod{n}$ for all integers a, then n is a prime number.
 - (b) Let $n \ge 2$ be a positive integer, and let a be an integer. If the congruence equation $x^3 \equiv a \pmod{n}$ has an integer solution, then the congruence equation $x^3 \equiv a \pmod{n^2}$ has an integer solution.
 - (c) If p is an odd prime number such that $p+1 \equiv 0 \pmod 8$, then there exists a integer a such that $a^2 \equiv 2 \pmod {p^3}$.
 - (d) Let f(X) be a monic polynomial with integer coefficients. Let p be an odd prime number. Suppose that for every positive integer m, there exists an integer a such that $f(a) \equiv 0 \pmod{p^m}$. Then there exists an integer b such that f(b) = 0.
 - (e) Let a be an integer, and let n_1, n_2 be odd positive integers. If $n_1 \equiv n_2 \pmod{a}$, then $\left(\frac{a}{n_1}\right) = \left(\frac{a}{n_2}\right)$.
- 2. Let n be a positive integer. Give a necessary and sufficient condition for the congruence equation

$$x^2 \equiv 1 \pmod{n}$$

to have exactly 2 solutions in $\mathbb{Z}/n\mathbb{Z}$. Please provide a complete proof.