Math 350 Practice Problems
April, 2005

1. Prove that \[\sum_{i=1}^{n} \frac{1}{i(i+1)} = \frac{n}{n+1} \] for all \(n \in \mathbb{N}_{>0}. \)

2. Prove that \[\left(\begin{array}{cc} 1 & 2 \\ 0 & 1 \end{array} \right)^n = \left(\begin{array}{cc} 1 & 2n \\ 0 & 1 \end{array} \right) \] for all \(n \in \mathbb{N}_{>0}. \)

3. Determine whether the following statements are true or false.
(a) For prime numbers \(p, \) the Legendre symbol \(\left(\frac{5}{p} \right) \) depends only on the congruence class of \(p \) modulo 5.
(b) For prime numbers \(p, \) the Legendre symbol \(\left(\frac{11}{p} \right) \) depends only on the congruence class of \(p \) modulo 11.
(c) For non-zero natural numbers \(a, b \) which are relatively prime, the Jacobi symbol \(\left(\frac{a}{b} \right) \) depends only on the congruence class of \(a \mod b. \)
(d) For non-zero natural numbers \(a, b \) which are relatively prime, the Jacobi symbol \(\left(\frac{b}{a} \right) \) depends only on the congruence class of \(b \mod 4a. \)

4. Find all integers \(n \) such that \(-1000 \leq n \leq 1000\) and satisfying the following three congruence relations
\[n \equiv 2 \pmod{3}, \quad n \equiv 3 \pmod{5} \quad \text{and} \quad n \equiv 4 \pmod{7}. \]

5. For \(p = 173 \) and \(p = 401, \) determine the set of all elements \(x \in \mathbb{Z}/p^2\mathbb{Z} \) such that \(x^5 \equiv 1 \pmod{p^2}. \)

6. Determine the set of all \(x \in \mathbb{Z}/13^4\mathbb{Z} \) such that \(x^3 \equiv -1 \pmod{13^4}. \)

7. Let \(S \) be the set of all pairs \((a, b)\) with \(a, b \in \mathbb{Z}, \) \(0 \leq a, b \leq 20 \) such that there exists an integer \(x \) such that \(x \equiv a \pmod{36} \) and \(x \equiv b \pmod{100}. \) Determine the number of elements of \(S. \)

8. Let \(p, q \) be prime numbers, \(p \neq q. \) Find a natural number \(n \) with \(0 \neq n < pq \) such that \(p^{2q-1} + q^{2p-1} \equiv n \pmod{pq}. \) (The number \(n \) should be given in terms of \(p \) and \(q. \))

9. Let \(p \) be an odd prime number. Show that the Legendre symbol \(\left(\frac{7}{p} \right) \) depends only on the congruence class of \(p \mod 28, \) and determine the value of \(\left(\frac{7}{p} \right) \) for each congruence class of \(p \mod 28. \)
10. (a) Determine the simple continued fraction expansion of $\sqrt{7}$.
(b) Find natural numbers a, b, c, d such that $\frac{c}{d} < \frac{\sqrt{7}}{2} < \frac{a}{b}$, $b, d > 100$, and $ad - bc = 1$.

11. Does the quadratic congruence equation

$$x^2 + 2x + 1002 \equiv 0 \pmod{483}$$

have a solution in $\mathbb{Z}/483\mathbb{Z}$?

12. Expand $\frac{173}{409}$ as a simple continued fraction.

13. Find natural numbers a, b such that $a 409 - b 250 = 1$.

14. Let p be a prime number. Determine the following numbers in terms of p.
 (a) the number of quadratic non-residues modulo p,
 (b) the number of primitive elements in $(\mathbb{Z}/p\mathbb{Z})^\times$,
 (c) the number of non-primitive elements in $(\mathbb{Z}/p\mathbb{Z})^\times$,
 (d) the number of elements in $(\mathbb{Z}/p\mathbb{Z})^\times$ which are quadratic non-residues but not primitive.

15. Determine the number of elements of $(\mathbb{Z}/9797\mathbb{Z})^\times$ of order 100.

16. (a) What is the maximal possible order for elements of $(\mathbb{Z}/9797\mathbb{Z})^\times$?
 (b) Determine the number of elements of $(\mathbb{Z}/9797\mathbb{Z})^\times$ whose order are maximal possible.

17. Prove that 561 is an Euler pseudoprime to the base 2, i.e.

$$2^{280} \equiv \left(\frac{2}{561} \right) \pmod{561},$$

where $\left(\frac{2}{561} \right)$ is the Jacobi symbol.

18. Suppose that n is natural number, $n \equiv 5 \pmod{12}$ and that n is an Euler pseudoprime to the base 3. Prove that n is a strong pseudoprime to the base 3, i.e. n passes the Miller-Rabin test to the base 3.

19. Relate the length of the period of the decimal expansion of $\frac{1}{561}$ to the order of a suitable element in $(\mathbb{Z}/n\mathbb{Z})^\times$ for a suitable integer n, and determine the length of that period.
20. The number 1729 factors as $1729 = 7 \times 13 \times 19$.

(a) Determine the number of elements in $(\mathbb{Z}/1729)^\times$ of order 3.

(b) Determine the number of elements in $(\mathbb{Z}/1729)^\times$ which are squares, i.e. equal to the square of some element in $(\mathbb{Z}/1729)^\times$.

(c) Determine the number of elements in $(\mathbb{Z}/1729)^\times$ which are cubes, i.e. equal to the cube of some element in $(\mathbb{Z}/1729)^\times$.

(c) Determine the number of elements in $(\mathbb{Z}/1729)^\times$ which are fourth powers, i.e. congruent to x^4 modulo 1729 for some integer x.