The second in-class exam focuses on the basics, just as the first one. Some of the problems below are more difficult than the exam problems.

1. (True/False questions with proofs, 30 points) Decide whether the following statements are true or false. Provide a proof if it is true; give a counter-example if it is false.
(a) Let $n \geq 2$ be positive integers. If $a^{n} \equiv a(\bmod n)$ for all integers a, then n is a prime number.
(b) Let $n \geq 2$ be a positive integer, and let a be an integer. If the congruence equation $x^{3} \equiv a$ $(\bmod n)$ has an integer solution, then the congruence equation $x^{3} \equiv a\left(\bmod n^{2}\right)$ has an integer solution.
(c) If p is an odd prime number such that $p+1 \equiv 0(\bmod 8)$, then there exists a integer a such that $a^{2} \equiv 2\left(\bmod p^{3}\right)$.
(d) Let $f(X)$ be a monic polynomial with integer coefficients. Let p be an odd prime number. Suppose that for every positive integer m, there exists an integer a such that $f(a) \equiv 0\left(\bmod p^{m}\right)$. Then there exists an integer b such that $f(b)=0$.
(e) Let a be an integer, and let n_{1}, n_{2} be odd positive integers. If $n_{1} \equiv n_{2}(\bmod a)$, then $\left(\frac{a}{n_{1}}\right)=$ $\left(\frac{a}{n_{2}}\right)$.
(f) Let n, a be positive integers. If $a \not \equiv 0(\bmod n)$, then $a^{2} \not \equiv 0\left(\bmod n^{2}\right)$.
(g) Suppose that u, v are integers such that $u^{2}+3 v^{2}$ is equal to a prime number p. Then $p \equiv 1$ $(\bmod 3)$.
2. Let n be a positive integer. Give a necessary and sufficient condition for the congruence equation

$$
x^{2} \equiv 1 \quad(\bmod n)
$$

to have exactly 2 solutions in $\mathbb{Z} / n \mathbb{Z}$. Please provide a complete proof.
3. Determine the number of elements in $\mathbb{Z} / 13^{5} \mathbb{Z}$ (respectively $\left.\mathbb{Z} /\left(11 \times 13^{2}\right) \mathbb{Z}\right)$ which are cubes, i.e. the third power of elements of $\mathbb{Z} / 13^{5} \mathbb{Z}$ (respectively $\mathbb{Z} /\left(11 \times 13^{2}\right) \mathbb{Z}$).
4. (Extra credit) Give a necessary and Give a necessary and sufficient condition for the congruence equation

$$
x^{3} \equiv 1 \quad(\bmod n)
$$

to have exactly 3 solutions in $\mathbb{Z} / n \mathbb{Z}$. Please provide a complete proof.

