Math 350 Assignment 10, Spring 2017

Due in class on Monday, April 3
Un phénomène dont la probabilité est 10^{-50} ne se produira donc jamais, ou du moins ne sera jamais observé.

- Émile Borel, Les probabilités et a vie

Part 1.

1. For the cases $n=77$ and $n=385$, determine the number of elements $b \in \mathbb{Z} / n \mathbb{Z}$ such that $b^{n-1} \neq 1$ $\bmod n$. (It is the number of witnesses in $\mathbb{Z} / n \mathbb{Z}$ that n is not a prime number according to Fermat's little theorem.)
2. Let p be an odd prime number. Recall that we have shown in class that there exists an element $\xi \in\left(\mathbb{Z} / p^{2} \mathbb{Z}\right)^{\times}$such that every element of $\left(\mathbb{Z} / p^{2} \mathbb{Z}\right)^{\times}$can be written as ξ^{a} for a uniquely determined element $a \in \mathbb{Z} / p(p-1) \mathbb{Z}$. Use this fact to show that for every positive integer the equation

$$
x^{k}=1 \bmod p^{2}
$$

has exactly $\operatorname{gcd}(k, p(p-1))$ solutions in $\mathbb{Z} / p^{2} \mathbb{Z}$.
(Note: This question is closely related to the next one.)
3. Let n be an odd positive integer and let p be a prime number such that $n \equiv 0\left(\bmod p^{2}\right)$.
(a) Use problem 2 above to show that the number of elements of the set

$$
\left\{x \in\left(\mathbb{Z} / p^{2} \mathbb{Z}\right)^{\times}: x^{n-1}=1 \bmod p^{2}\right\}
$$

is equal to $\operatorname{gcd}(p-1, n-1)$.
(b) Show that the number of solutions of $x \in \mathbb{Z} / n \mathbb{Z}$ of the equation

$$
x^{n-1}=1 \bmod n
$$

is at most $\frac{(p-1) n}{p^{2}} \leq \frac{n}{4}$.
Part 2. Extra credit problems
A. Suppose that p, q are two odd prime numbers, $p \equiv 1(\bmod 4)$ and $q \equiv 3(\bmod 4)$. Let $n=p \cdot q$. Determine the number of Miller-Rabin witnesses $\bmod n$ for n to be a composite number.
B. Let n be an odd positive composite integer. Show that at least $3 / 4$ of the elements of the set $\mathbb{Z} / n \mathbb{Z} \backslash\{0 \bmod n\}$ are Miller-Rabin witnesses.
C. Estimate the average number of steps needed to compute the Legendre symbol $\left(\frac{a}{p}\right)$ for a given prime number p and a number $a<p$. both $\leq 2^{n}-1$. The estimate should be expressed in n.
[Note: In the course of answering this question you need to specify the precise meaning of "average".]

