Math 350 Assignment 11, Spring 2017

Due in class on Monday, April 10

Part 1. From the textbook A friendly introduction to number theory

- Exercise 36.2 (a), 4th edition (= Exercise 34.2, (a), 3rd edition)
- Exercise 36.3, (a)-(c), 4th edition (= Exercise 34.3, (a)-(c), 3rd edition)
- Exercise 36.5, (a) \& (b), 4th edition (= Exercise 34.5, (a) \& (b), 3rd edition)

Part 2. Let $n \geq 3$ be an odd positive integer. Let b be an integer relatively prime to n. We say that n passes the Solovay-Strassen test by b for primality if

$$
b^{(n-1) / 2} \equiv\left(\frac{b}{n}\right)(\bmod n)
$$

where the right hand side of the above formula is the Jacobi symbol.
(a) For $n=35$, find the number of elements of the following set

$$
\left\{\bar{b} \in(\mathbb{Z} / 35 \mathbb{Z})^{\times} \left\lvert\, \bar{b}^{(n-1) / 2}=\left(\frac{b}{n}\right) \bmod n\right.\right\}
$$

(b) Suppose that there exists a prime number p such that $n \equiv 0\left(\bmod p^{2}\right)$. Show that there exists an integer b relatively prime to n such that n fails the Solovay-Strassen test by b.

Part 3. Extra credit problems.
E1. Continue in the set-up of Part 2.
(c) Suppose that n is a product of $r \geq 2$ distinct odd prime numbers. Show that exists an integer b relatively prime to n such that n fails the Solovay-Strassen test by b. (So there is no analogue of Carmichael number for the Solovay-Strassen test.)
(d) Suppose that n is an odd composite natural number. Prove that

$$
\#\left\{b \in \mathbb{N} \mid 2 \leq b \leq n-1, b^{(n-1) / 2} \not \equiv\left(\frac{b}{n}\right)(\bmod n)\right\} \geq \frac{n-1}{2}
$$

E2. Exercise 36.6, 4th edition (= Exercise 34.6, 4th edition)

