Math 350 Assignment 2, Spring 2017

Due in class on Monday, January 30
Part 1. From the textbook A friendly introduction to number theory.

- Exercise 5.3
- Exercise 6.5
- Exercise 8.3
- Exercise 9.2
- Exercise 10.1 (a)
https://people.mpim-bonn.mpg.de/zagier/files/doi/10.2307/2323918/fulltext.pdf Part 2.
A. Define a function $d: \mathbb{N}_{\geq 1} \rightarrow \mathbb{N}$ by

$$
d(n)=\sum_{d \mid n} 1
$$

In other words $d(n)$ is the number of positive integers dividing n. Suppose you know the factorization of $n: n=p_{1}^{a_{1}} \cdots p_{k}^{a_{k}}$, where p_{1}, \ldots, p_{k} are mutually distinct prime numbers and a_{1}, \ldots, a_{k} are positive integers. What is $d(n)$?

Part 3. Extra credit problems.

- Exercise 6.6. Note that a proof of $6.6(\mathrm{~d})$ implies that if $\operatorname{gcd}(a, b)=1$ for two positive integers a, b, there exists a natural number n_{0} such that for every natural number $n \geq n_{0}$, there exist natural number x, y such that $n=a x+b y$.
- Exercise 8.4
- Exercise 9.3
https://people.mpim-bonn.mpg.de/zagier/files/doi/10.2307/2323918/fulltext.pdf
- Show that for every positive real number $\boldsymbol{\delta}$, there exists a natural number $n(\boldsymbol{\delta})$ such that $d(n) \leq$ n^{δ} for all $n \geq n(\boldsymbol{\delta})$.
[You can also prove partial results for some $\delta<1$, such as $1 / 2$.]
- A famous theorem of Fermat asserts that every prime number p whichi is congruent to 1 modulo 4 is a sum of the square of two integers. Read the one-sentence proof of Don Zagier https:// people.mpim-bonn.mpg.de/zagier/files/doi/10.2307/2323918/fulltext.pdf, and explain why that sentence is a proof. In other words, expand that sentence into a proof which is more easily understandable.

