MATH 350 ASSIGNMENT 2, SPRING 2017

Due in class on Monday, January 30

Part 1. From the textbook A friendly introduction to number theory.

- Exercise 5.3
- Exercise 6.5
- Exercise 8.3
- Exercise 9.2
- Exercise 10.1 (a)

https://people.mpim-bonn.mpg.de/zagier/files/doi/10.2307/2323918/fulltext.pdf Part 2.

A. Define a function $d : \mathbb{N}_{\geq 1} \to \mathbb{N}$ by

$$d(n) = \sum_{d|n} 1$$

In other words d(n) is the number of positive integers dividing *n*. Suppose you know the factorization of *n*: $n = p_1^{a_1} \cdots p_k^{a_k}$, where p_1, \ldots, p_k are mutually distinct prime numbers and a_1, \ldots, a_k are positive integers. What is d(n)?

Part 3. Extra credit problems.

- Exercise 6.6. Note that a proof of 6.6 (d) implies that if gcd(a,b) = 1 for two positive integers a,b, there exists a natural number n_0 such that for every natural number $n \ge n_0$, there exist natural number x, y such that n = ax + by.
- Exercise 8.4
- Exercise 9.3

https://people.mpim-bonn.mpg.de/zagier/files/doi/10.2307/2323918/fulltext.pdf

• Show that for every positive real number δ , there exists a natural number $n(\delta)$ such that $d(n) \le n^{\delta}$ for all $n \ge n(\delta)$.

[You can also prove partial results for some $\delta < 1$, such as 1/2.]

• A famous theorem of Fermat asserts that every prime number *p* which is congruent to 1 modulo 4 is a sum of the square of two integers. Read the one-sentence proof of Don Zagier https://people.mpim-bonn.mpg.de/zagier/files/doi/10.2307/2323918/fulltext.pdf, and explain why that sentence is a proof. In other words, expand that sentence into a proof which is more easily understandable.