Math 350 Assignment 3, Spring 2017

Due in class on Monday, February 6

Part 1. From the textbook A friendly introduction to number theory.

- Exercise 11.12 (c) Note. You need to give a list of values of n for which $\phi(n)=n / 12$, and show that there is no other positive integers for which this equality holds.
- Exercise 12.4 (a), and (the first part, if you use the 3rd edition) of (b). For part (b), please formulate the pattern you find for $A_{m}\left(\bmod m^{2}\right)$ as a precise statement, a conjecture.

Note: Exercise 12.4 in the 3rd edition has been changed in the 4th edition: The second part of Exercise 12.4 (b) was removed from part (b) and became part (c) in the 4th edition.

- Exercise 12.6

Part 2.

A. Define a function $f: \mathbb{N}_{\geq 1} \rightarrow \mathbb{N}_{\geq 1}$ by

$$
f(n)=\sum_{d \mid n} \phi(d)
$$

(a) Show that the function f is multiplicative, i.e.

$$
f(m n)=f(m) \cdot f(n) \quad \text { if } \operatorname{gcd}(m, n)=1
$$

(b) Show that $f(n)=n$ for every positive integer n. In other words

$$
\sum_{d \mid n} \phi(d)=n \quad \forall n \in \mathbb{N}_{\geq 1}
$$

B. Define a function from \mathbb{R} to $[0,1)$ by

$$
x \mapsto\langle x\rangle:=x-\lfloor x\rfloor .
$$

The number $\langle x\rangle$ is called the fractional part of x. Suppose that $n \geq 2$ is a positive integer, a, b are integers with $\operatorname{gcd}(a, n)=1$. Prove that

$$
\sum_{0 \leq k<n}\left\langle\frac{a k+b}{n}\right\rangle=(n-1) / 2
$$

Part 3. Extra credit problems.
C. Prove the conjecture you formulated in part (b) of exercise 12.4. (This is Exercise 12.4 (c) in the 4th edition.)
D. Let p be a prime number such that $p \equiv 1(\bmod 3)$. Let n be any integer. Show that there exists an integer k such that $n \equiv k^{3}(\bmod p)$ if and only if $n^{(p-1) / 3} \equiv 1(\bmod 3)$.

